ﻻ يوجد ملخص باللغة العربية
We characterize the accuracy of linear-polarization mosaics made using the Atacama Large Millimeter/submillimeter Array (ALMA). First, we observed the bright, highly linearly polarized blazar 3C 279 at Bands 3, 5, 6, and 7 (3 mm, 1.6 mm, 1.3 mm, and 0.87 mm, respectively). At each band, we measured the blazars polarization on an 11$times$11 grid of evenly-spaced offset pointings covering the full-width at half-maximum (FWHM) area of the primary beam. After applying calibration solutions derived from the on-axis pointing of 3C 279 to all of the on- and off-axis data, we find that the residual polarization errors across the primary beam are similar at all frequencies: the residual errors in linear polarization fraction $P_textrm{frac}$ and polarization position angle $chi$ are $lesssim$0.001 ($lesssim$0.1% of Stokes $I$) and $lesssim$1$^circ$ near the center of the primary beam; the errors increase to $sim$0.003-0.005 ($sim$0.3-0.5% of Stokes $I$) and $sim$1-5$^circ$ near the FWHM as a result of the asymmetric beam patterns in the (linearly polarized) $Q$ and $U$ maps. We see the expected double-lobed beam squint pattern in the circular polarization (Stokes $V$) maps. Second, to test the polarization accuracy in a typical ALMA project, we performed observations of continuum linear polarization toward the Kleinmann-Low nebula in Orion (Orion-KL) using several mosaic patterns at Bands 3 and 6. We show that after mosaicking, the residual off-axis errors decrease as a result of overlapping multiple pointings. Finally, we compare the ALMA mosaics with an archival 1.3 mm CARMA polarization mosaic of Orion-KL and find good consistency in the polarization patterns.
A diverse array of science goals require accurate flux calibration of observations with the Atacama Large Millimeter/Submillimeter array (ALMA), however, this goal remains challenging due to the stochastic time-variability of the ``grid quasars ALMA
During the main phase of evolution of a protoplanetary disk, accretion regulates the inner-disk properties, such as the temperature and mass distribution, and in turn, the physical conditions associated with planet formation. The driving mechanism be
One of the main considerations in the ALMA Development Roadmap for the future of operations beyond 2030 is to at least double its on-sky instantaneous bandwidth capabilities. Thanks to the technological innovations of the past two decades, we can now
Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics
The protoplanetary disk around Ophiuchus IRS 48 shows an azimuthally asymmetric dust distribution in (sub-)millimeter observations, which is interpreted as a vortex, where millimeter/centimeter-sized particles are trapped at the location of the conti