ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting isolated stellar-mass black holes in the absence of microlensing parallax effect

75   0   0.0 ( 0 )
 نشر من قبل Wei Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Numa Karolinski




اسأل ChatGPT حول البحث

Gravitational microlensing can detect isolated stellar-mass black holes (BHs), which are believed to be the dominant form of Galactic BHs according to population synthesis models. Previous searches for BH events in microlensing data focused on long-timescale events with significant microlensing parallax detections. Here we show that, although BH events preferentially have long timescales, the microlensing parallax amplitudes are so small that in most cases the parallax signals cannot be detected statistically significantly. We then identify OGLE-2006-BLG-044 to be a candidate BH event because of its long timescale and small microlensing parallax. Our findings have implications to future BH searches in microlensing data.



قيم البحث

اقرأ أيضاً

The LIGO-Virgo gravitational-wave (GW) observation unveiled the new population of black holes (BHs) that appears to have an extended mass spectrum up to around $70M_odot$, much heavier than the previously-believed mass range ($sim 8M_odot$). In this paper, we study the capability of a microlensing observation of stars in the Milky Way (MW) bulge region to identify BHs of GW mass scales, taking into account the microlensing parallax characterized by the parameter $pi_{rm E}propto M^{-1/2}$ ($M$ is the mass of a lens), which is a dimension-less quantity defined by the ratio of the astronomical unit to the projected Einstein radius. First, assuming that BHs follow the same spatial and velocity distributions of stars as predicted by the standard MW model, we show that microlensing events with long light curve timescales, $t_{rm E}gtrsim 100~{rm days}$, and small parallax effects, $pi_{rm E}sim 10^{-2}$, are dominated by BH lenses compared to stellar-mass lenses. Second, using a Markov chain Monte Carlo analysis of the simulated light curve, we show that BH lens candidates are securely identified on individual basis, if the parallax effect is detected or well constrained to the precision of a percent level in $pi_{rm E}$. We also discuss that a microlensing event of an intermediate-mass BH of $sim 1000M_odot$, if it occurs, can be identified in a distinguishable way from stellar-mass BHs.
We present post-Newtonian $N$-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericenter shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of ten BHs with initial mass of $30~M_odot$. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is $sim10$ Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate ($dot{m}_{rm c}$), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce $dot{m}_{rm c}$ especially in gas number density higher than $10^8~{rm cm}^{-3}$, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a $sim 30~M_odot$ BH binary has been detected (Abbott et al. 2016). Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few $M_odot$ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.
We report the mass and distance measurements of two single-lens events from the 2017 Spitzer microlensing campaign. The ground-based observations yield the detection of finite-source effects, and the microlens parallaxes are derived from the joint an alysis of ground-based observations and Spitzer observations. We find that the lens of OGLE-2017-BLG-1254 is a $0.60 pm 0.03 M_{odot}$ star with $D_{rm LS} = 0.53 pm 0.11~text{kpc}$, where $D_{rm LS}$ is the distance between the lens and the source. The second event, OGLE-2017-BLG-1161, is subject to the known satellite parallax degeneracy, and thus is either a $0.51^{+0.12}_{-0.10} M_{odot}$ star with $D_{rm LS} = 0.40 pm 0.12~text{kpc}$ or a $0.38^{+0.13}_{-0.12} M_{odot}$ star with $D_{rm LS} = 0.53 pm 0.19~text{kpc}$. Both of the lenses are therefore isolated stars in the Galactic bulge. By comparing the mass and distance distributions of the eight published Spitzer finite-source events with the expectations from a Galactic model, we find that the Spitzer sample is in agreement with the probability of finite-source effects occurrence in single lens events.
The longest microlensing events provide enough information to estimate the mass and distance of the lens. Among hundreds of millions of stars which were monitored for many years by the OGLE project we selected those with clear parallax effect and der ived the mass function of lensing objects in the Milky Way. We also found candidates for microlensing stellar-mass single black holes. We discuss how Gaia superb astrometry will help in measuring masses of remnants in currently on-going and future microlensing events.
Stellar evolution theory predicts a gap in the black hole birth function caused by the pair instability. Presupernova stars that have a core mass below some limiting value, Mlo, after all pulsational activity is finished, collapse to black holes, whe reas more massive ones, up to some limiting value, Mhi, explode, promptly and completely, as pair-instability supernovae. Previous work has suggested Mlo is approximately 50 solar masses and Mhi is approximately 130 solar masses. These calculations have been challenged by recent LIGO observations that show many black holes merging with individual masses, Mlo is least some 65 solar masses. Here we explore four factors affecting the theoretical estimates for the boundaries of this mass gap: nuclear reaction rates, evolution in detached binaries, rotation, and hyper-Eddington accretion after black hole birth. Current uncertainties in reaction rates by themselves allow Mlo to rise to 64 solar masses and Mhi as large as 161 solar masses. Rapid rotation could further increase Mlo to about 70 solar masses, depending on the treatment of magnetic torques. Evolution in detached binaries and super-Eddington accretion can, with great uncertainty, increase Mlo still further. Dimensionless Kerr parameters close to unity are allowed for the more massive black holes produced in close binaries, though they are generally smaller.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا