ﻻ يوجد ملخص باللغة العربية
Generalization is an important feature of neural network, and there have been many studies on it. Recently, with the development of quantum compu-ting, it brings new opportunities. In this paper, we studied a class of quantum neural network constructed by quantum gate. In this model, we mapped the feature data to a quantum state in Hilbert space firstly, and then implement unitary evolution on it, in the end, we can get the classification result by im-plement measurement on the quantum state. Since all the operations in quan-tum neural networks are unitary, the parameters constitute a hypersphere of Hilbert space. Compared with traditional neural network, the parameter space is flatter. Therefore, it is not easy to fall into local optimum, which means the quantum neural networks have better generalization. In order to validate our proposal, we evaluated our model on three public datasets, the results demonstrated that our model has better generalization than the classical neu-ral network with the same structure.
In the noisy intermediate-scale quantum (NISQ) era, one of the key questions is how to deal with the high noise level existing in physical quantum bits (qubits). Quantum error correction is promising but requires an extensive number (e.g., over 1,000
Quantum neural networks (QNNs) have generated excitement around the possibility of efficiently analyzing quantum data. But this excitement has been tempered by the existence of exponentially vanishing gradients, known as barren plateau landscapes, fo
We propose a novel paradigm of integration of Grovers algorithm in a machine learning framework: the inductive Grover oracular quantum neural network (IGO-QNN). The model defines a variational quantum circuit with hidden layers of parameterized quant
Utilizing quantum computers to deploy artificial neural networks (ANNs) will bring the potential of significant advancements in both speed and scale. In this paper, we propose a kind of quantum spike neural networks (SNNs) as well as comprehensively
The neural network and quantum computing are both significant and appealing fields, with their interactive disciplines promising for large-scale computing tasks that are untackled by conventional computers. However, both developments are restricted b