ﻻ يوجد ملخص باللغة العربية
We present a formal multiagent framework for coordinating a class of collaborative industrial practices called Industrial Symbiotic Networks (ISNs) as cooperative games. The game-theoretic formulation of ISNs enables systematic reasoning about what we call the ISN implementation problem. Specifically, the characteristics of ISNs may lead to the inapplicability of standard fair and stable benefit allocation methods. Inspired by realistic ISN scenarios and following the literature on normative multiagent systems, we consider regulations and normative socio-economic policies as coordination instruments that in combination with ISN games resolve the situation. In this multiagent system, employing Marginal Contribution Nets (MC-Nets) as rule-based cooperative game representations foster the combination of regulations and ISN games with no loss in expressiveness. We develop algorithmic methods for generating regulations that ensure the implementability of ISNs and as a policy support, present the policy requirements that guarantee the implementability of all the desired ISNs in a balanced-budget way.
This paper discusses the dynamics of Transaction Cost (TC) in Industrial Symbiosis Institutions (ISI) and provides a fair and stable mechanism for TC allocation among the involved firms in a given ISI. In principle, industrial symbiosis, as an implem
Multiagent Systems (MAS) research reached a maturity to be confidently applied to real-life complex problems. Successful application of MAS methods for behavior modeling, strategic reasoning, and decentralized governance, encouraged us to focus on ap
This paper investigates the evaluation of learned multiagent strategies in the incomplete information setting, which plays a critical role in ranking and training of agents. Traditionally, researchers have relied on Elo ratings for this purpose, with
Modeling agent behavior is central to understanding the emergence of complex phenomena in multiagent systems. Prior work in agent modeling has largely been task-specific and driven by hand-engineering domain-specific prior knowledge. We propose a gen
This paper investigates a population-based training regime based on game-theoretic principles called Policy-Spaced Response Oracles (PSRO). PSRO is general in the sense that it (1) encompasses well-known algorithms such as fictitious play and double