ﻻ يوجد ملخص باللغة العربية
Multiple relaxation channels often arise in the dynamics of liquids where the momentum current associated to the particle-conservation law splits into distinct contributions. Examples are strongly confined liquids for which the currents in lateral and longitudinal direction to the walls are very different, or fluids of nonspherical particles with distinct relaxation patterns for translational and rotational degrees of freedom. Here, we perform an asymptotic analysis of the slow structural relaxation close to kinetic arrest as described by mode-coupling theory (MCT) with several relaxation channels. Compared to standard MCT, the presence of multiple relaxation channels significantly changes the structure of the underlying equations of motion and leads to additional, non-trivial terms in the asymptotic solution. We show that the solution can be rescaled, and thus prove that the well-known $ beta $-scaling equation of MCT remains valid even in the presence of multiple relaxation channels. The asymptotic treatment is validated using a novel schematic model. We demonstrate that the numerical solution of this schematic model can indeed be described by the derived asymptotic scaling laws close to kinetic arrest. Additionally, clear traces of the existence of two distinct decay channels are found in the low-frequency susceptibility spectrum, suggesting that clear footprints of the additional relaxation channels can in principle be detected in simulations or experiments of confined or molecular liquids.
The only available quantitative description of the slowing down of the dynamics upon approaching the glass transition has been, so far, the mode-coupling theory, developed in the 80s by Gotze and collaborators. The standard derivation of this theory
We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of
We present an extensive treatment of the generalized mode-coupling theory (GMCT) of the glass transition, which seeks to describe the dynamics of glass-forming liquids using only static structural information as input. This theory amounts to an infin
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we
The entropy production rate (EPR) offers a quantitative measure of time reversal symmetry breaking in non-equilibrium systems. It can be defined either at particle level or at the level of coarse-grained fields such as density; the EPR for the latter