ﻻ يوجد ملخص باللغة العربية
Molecular packing, crystallinity, and texture of semiconducting polymers are often critical to performance. Although frame-works exist to quantify the ordering, interpretations are often just qualitative, resulting in imprecise and liberal use of terminology. Here, we reemphasize the continuity of the degree of molecular ordering and advocate that a more nuanced and consistent terminology is used with regards to crystallinity, semicyrstallinity, paracrystallinity, crystallite/aggregate, and related characteristics. We are motivated in part by our own imprecise and inconsistent use of terminology and the need to have a primer or tutorial reference to teach new group members. We show that a deeper understanding can be achieved by combining grazing-incidence wide-angle X-ray scattering and differential scanning calorimetry. We classify a broad range of representative polymers into four proposed categories based on the quantitative analysis of molecular order based on the paracrystalline disorder parameter (g). A small database is presented for over 10 representative conjugated and insulating polymers ranging from amorphous to semicrystalline. Finally, we outline the challenges to rationally design perfect polymer crystals and propose a new molecular design approach that envisions conceptual molecular grafting that is akin to strained and unstrained hetero-epitaxy in classic (compound) semiconductors thin film growth.
The comprehension of business process models is crucial for enterprises. Prior research has shown that children as well as adolescents perceive and interpret graphical representations in a different manner compared to grown-ups. To evaluate this, obs
Using a coarse-grained bead-spring model for semi-flexible macromolecules forming a polymer brush, structure and dynamics of the polymers is investigated, varying chain stiffness and grafting density. The anchoring condition for the grafted chains is
The eventual exploitation of one-dimensional nanomaterials yet needs the development of scalable, high yield, homogeneous, and environmentally friendly methods able to meet the requirements for the fabrication of under design functional nanomaterials
The relaxation dynamics and thermodynamic properties of supercooled and glassy gambogic acid are investigated using both theory and experiment. We measure the temperature dependence of the relaxation times in three polymorphs (alpha-, beta-, and gamm
Topological defects play a prominent role in the physics of two-dimensional materials. When driven out of equilibrium in active nematics, disclinations can acquire spontaneous self-propulsion and drive self-sustained flows upon proliferation. Here we