ﻻ يوجد ملخص باللغة العربية
We report the discovery of a young (only 30-40,Myr) snake-like structure (dubbed a stellar snake) in the solar neighborhood from {it Gaia} DR2. The average distance of this structure is about 310,pc from us. Both the length and width are over 200,pc, but the thickness is only about 80,pc. The snake has one tail and two dissolving cores, which can be clearly distinguished in the 6D phase space. The whole structure includes thousands of members with a total mass of larger than 2000,$M_{odot}$ in an uniform population. The population is so young that it can not be well explained with the classical theory of tidal tails. We therefore suspect that the snake is hierarchically primordial, rather than the result of dynamically tidal stripping, even if the snake is probably expanding. The coherent 5D phase information and the ages suggest that the snake was probably born in the same environment as the filamentary structure of Beccari et al.(2020). If so, the snake could extend the sky region of the Vela OB2 association by a factor of $sim 2$, and supplement the census of its coeval structures. This finding is useful to understand the history of the formation and evolution of the Vela OB2 complex. The age of the snake well matches with that of the Gould Belt. In the sky region of our interest, we detect one new open cluster, which is named as Tian 1 in this work.
In this paper, we present a novel view on the morphology and the dynamical state of 10 prominent, nearby ($leq$ 500 pc), and young ($sim$30-300 Myr) open star clusters with Gaia DR2: $alpha,$Per, Blanco 1, IC 2602, IC 2391, Messier 39, NGC 2451A, NGC
For the past 150 years, the prevailing view of the local Interstellar Medium (ISM) was based on a peculiarity known as the Goulds Belt, an expanding ring of young stars, gas, and dust, tilted about 20$^circ$ to the Galactic plane. Still, the physical
The radio source J1819+3845 underwent a period of extreme interstellar scintillation between circa 1999 and 2007. The plasma structure responsible for this scintillation was determined to be just $1$-$3,$pc from the solar system and to posses a densi
The Pipe Nebula is a massive, nearby dark molecular cloud with a low star-formation efficiency which makes it a good laboratory to study the very early stages of the star formation process. The Pipe Nebula is largely filamentary, and appears to be th
We analyze the 3D morphology and kinematics of 13 open clusters (OCs) located within 500 pc of the Sun, using Gaia EDR3 and kinematic data from literature. Members of OCs are identified using the unsupervised machine learning method StarGO, using 5D