ﻻ يوجد ملخص باللغة العربية
We present ManifoldPlus, a method for robust and scalable conversion of triangle soups to watertight manifolds. While many algorithms in computer graphics require the input mesh to be a watertight manifold, in practice many meshes designed by artists are often for visualization purposes, and thus have non-manifold structures such as incorrect connectivity, ambiguous face orientation, double surfaces, open boundaries, self-intersections, etc. Existing methods suffer from problems in the inputs with face orientation and zero-volume structures. Additionally most methods do not scale to meshes of high complexity. In this paper, we propose a method that extracts exterior faces between occupied voxels and empty voxels, and uses a projection-based optimization method to accurately recover a watertight manifold that resembles the reference mesh. Compared to previous methods, our methodology is simpler. It does not rely on face normals of the input triangle soups and can accurately recover zero-volume structures. Our algorithm is scalable, because it employs an adaptive Gauss-Seidel method for shape optimization, in which each step is an easy-to-solve convex problem. We test ManifoldPlus on ModelNet10 and AccuCity datasets to verify that our methods can generate watertight meshes ranging from object-level shapes to city-level models. Furthermore, through our experimental evaluations, we show that our method is more robust, efficient and accurate than the state-of-the-art. Our implementation is publicly available.
We present MeshODE, a scalable and robust framework for pairwise CAD model deformation without prespecified correspondences. Given a pair of shapes, our framework provides a novel shape feature-preserving mapping function that continuously deforms on
In this paper, we extend our earlier polycube-based all-hexahedral mesh generation method to hexahedral-dominant mesh generation, and present the HexDom software package. Given the boundary representation of a solid model, HexDom creates a hex-domina
Numerical computation of shortest paths or geodesics on curved domains, as well as the associated geodesic distance, arises in a broad range of applications across digital geometry processing, scientific computing, computer graphics, and computer vis
The humble loop shrinking property played a central role in the inception of modern topology but it has been eclipsed by more abstract algebraic formalism. This is particularly true in the context of detecting relevant non-contractible loops on surfa
In this paper, we propose a stochastic geometric iterative method to approximate the high-resolution 3D models by finite Loop subdivision surfaces. Given an input mesh as the fitting target, the initial control mesh is generated using the mesh simpli