ﻻ يوجد ملخص باللغة العربية
The emergence of the Internet-of-Things and cyber-physical systems necessitates the coordination of access to limited communication resources in an autonomous and distributed fashion. Herein, the optimal design of a wireless sensing system with n sensors communicating with a fusion center via a collision channel of limited capacity k (k < n) is considered. In particular, it is shown that the problem of minimizing the mean-squared error subject to a threshold-based strategy at the transmitters is quasi-convex. As such, low complexity, numerical optimization methods can be applied. When coordination among sensors is not possible, the performance of the optimal threshold strategy is close to that of a centralized lower bound. The loss due to decentralization is thoroughly characterized. Local communication among sensors (using a sparsely connected graph), enables the on-line learning of unknown parameters of the statistical model. These learned parameters are employed to compute the desired thresholds locally and autonomously. Consensus-based strategies are investigated and analyzed for parameter estimation. One strategy approaches the performance of the decentralized approach with fast convergence and a second strategy approaches the performance of the centralized approach, albeit with slower convergence. A hybrid scheme that combines the best of both approaches is proposed offering a fast convergence and excellent convergent performance.
We study distributed estimation of a high-dimensional static parameter vector through a group of sensors whose communication network is modeled by a fixed directed graph. Different from existing time-triggered communication schemes, an event-triggere
This paper proposes a distributed framework for vehicle grid integration (VGI) taking into account the communication and physical networks. To this end, we model the electric vehicle (EV) behaviour that includes time of departure, time of arrival, st
We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated $M$-state Markov fading channel, where the p
In this paper we consider the problem of transmission power allocation for remote estimation of a dynamical system in the case where the estimator is able to simultaneously receive packets from multiple interfering sensors, as it is possible e.g. wit
Although state estimation in networked control systems is a fundamental problem, few efforts have been made to study distributed state estimation via multiple access channels (MACs). In this article, we give a characterization of the zero-error capac