ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant planet formation at the pressure maxima of protoplanetary disks II. A hybrid accretion scenario

107   0   0.0 ( 0 )
 نشر من قبل Octavio Miguel Guilera
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations of protoplanetary disks have revealed ring-like structures that can be associated to pressure maxima. Pressure maxima are known to be dust collectors and planet migration traps. Most of planet formation works are based either on the pebble accretion model or on the planetesimal accretion model. However, recent studies proposed the possible formation of Jupiter by the hybrid accretion of pebbles and planetesimals. We aim to study the full process of planet formation consisting of dust evolution, planetesimal formation and planet growth at a pressure maximum in a protoplanetary disk. We compute, through numerical simulations, the gas and dust evolution, including dust growth, fragmentation, radial drift and particle accumulation at a pressure bump. We also consider the formation of planetesimals by streaming instability and the formation of a moon-size embryo that grows into a giant planet by the hybrid accretion of pebbles and planetesimals. We find that pressure maxima in protoplanetary disks are efficient collectors of dust drifting inwards. The condition of planetesimal formation by streaming instability is fulfilled due to the large amount of dust accumulated at the pressure bump. Then, a massive core is quickly formed (in $sim 10^4$ yr) by the accretion of pebbles. After the pebble isolation mass is reached, the growth of the core slowly continues by the accretion of planetesimals. The energy released by planetesimal accretion delays the onset of runaway gas accretion, allowing a gas giant to form after $sim$1 Myr of disk evolution. The pressure maximum also acts as a migration trap. Pressure maxima in protoplanetary disks are preferential locations for dust traps, planetesimal formation by streaming instability and planet migration traps. All these conditions allow the fast formation of a giant planet by the hybrid accretion of pebbles and planetesimals.



قيم البحث

اقرأ أيضاً

162 - O. M. Guilera , Zs. Sandor 2016
In the classical core-accretion planet formation scenario, rapid inward migration and accretion timescales of kilometer size planetesimals may not favor the formation of massive cores of giant planets before the dissipation of protoplanetary disks. O n the other hand, the existence of pressure maxima in the disk could act as migration traps and locations for solid material accumulation, favoring the formation of massive cores. We aim to study the radial drift of pebbles and planetesimals and planet migration at pressure maxima in a protoplanetary disk and their implications for the formation of massive cores as triggering a gaseous runaway accretion phase. The time evolution of a viscosity driven accretion disk is solved numerically introducing a a dead zone as a low-viscosity region in the protoplanetary disk. A population of pebbles and planetesimals evolving by radial drift and accretion by the planets is also considered. Finally, the embryos embedded in the disk grow by the simultaneous accretion of pebbles, planetesimals and the surrounding gas. Our simulations show that the pressure maxima generated at the edges of the low-viscosity region of the disk act as planet migration traps, and that the pebble and planetesimal surface densities are significantly increased due to the radial drift towards pressure maxima locations. However, our simulations also show that migration trap locations and solid material accumulation locations are not exactly at the same positions. Thus, a planets semi-major axis oscillations around zero torque locations, predicted by MHD and HD simulations, are needed for the planet to accrete all the available material accumulated at the pressure maxima. Pressure maxima generated at the edges of a low-viscosity region of a protoplanetary disk seem to be preferential locations for the formation and trap of massive cores.
The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulati ons of giant-planet formation that considers a corrected equation of state. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
Successful exoplanet surveys in the last decade have revealed that planets are ubiquitous throughout the Milky Way, and show a large diversity in mass, location and composition. At the same time, new facilities such as the Atacama Large Millimeter/su bmillimeter Array (ALMA) and optical/infrared facilities including Gemini/GPI have provided us with sharper images than ever before of protoplanetary disks around young stars, the birth cradles of planets. The high spatial resolution has revealed astonishing structures in disks, such as rings, gaps, asymmetries and spiral arms, and the enormous jump in sensitivity has provided the tools for both large, statistically relevant surveys and deep, sensitive molecular line studies. These observations have revolutionized our view of planet formation, disk formation and disk evolution, bringing model simulations and observations closer to the same level of detail, with many contributions from Canadian researchers on theoretical, observational and technological sides. The new results have inevitably led to a range of new questions, which require next generation instruments such as the Next Generation Very Large Array (ngVLA) and large scale optical infrared facilities. In this white paper we will discuss the current transformation in our understanding of planet formation and the next steps and challenges in connecting theory with exoplanet demographics and protoplanetary disk observations for Canadian research.
122 - O. M. Guilera 2015
In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than 10 Earth m asses) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii > 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.
Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e $sim$ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا