We study a prototypical problem in empirical Bayes. Namely, consider a population consisting of $k$ individuals each belonging to one of $k$ types (some types can be empty). Without any structural restrictions, it is impossible to learn the composition of the full population having observed only a small (random) subsample of size $m = o(k)$. Nevertheless, we show that in the sublinear regime of $m =omega(k/log k)$, it is possible to consistently estimate in total variation the emph{profile} of the population, defined as the empirical distribution of the sizes of each type, which determines many symmetric properties of the population. We also prove that in the linear regime of $m=c k$ for any constant $c$ the optimal rate is $Theta(1/log k)$. Our estimator is based on Wolfowitzs minimum distance method, which entails solving a linear program (LP) of size $k$. We show that there is a single infinite-dimensional LP whose value simultaneously characterizes the risk of the minimum distance estimator and certifies its minimax optimality. The sharp convergence rate is obtained by evaluating this LP using complex-analytic techniques.