ﻻ يوجد ملخص باللغة العربية
We study a prototypical problem in empirical Bayes. Namely, consider a population consisting of $k$ individuals each belonging to one of $k$ types (some types can be empty). Without any structural restrictions, it is impossible to learn the composition of the full population having observed only a small (random) subsample of size $m = o(k)$. Nevertheless, we show that in the sublinear regime of $m =omega(k/log k)$, it is possible to consistently estimate in total variation the emph{profile} of the population, defined as the empirical distribution of the sizes of each type, which determines many symmetric properties of the population. We also prove that in the linear regime of $m=c k$ for any constant $c$ the optimal rate is $Theta(1/log k)$. Our estimator is based on Wolfowitzs minimum distance method, which entails solving a linear program (LP) of size $k$. We show that there is a single infinite-dimensional LP whose value simultaneously characterizes the risk of the minimum distance estimator and certifies its minimax optimality. The sharp convergence rate is obtained by evaluating this LP using complex-analytic techniques.
We present some new results on the joint distribution of an arbitrary subset of the ordered eigenvalues of complex Wishart, double Wishart, and Gaussian hermitian random matrices of finite dimensions, using a tensor pseudo-determinant operator. Speci
Estimating the rank of a corrupted data matrix is an important task in data science, most notably for choosing the number of components in principal component analysis. Significant progress on this task has been made using random matrix theory by cha
In this paper, we study the classical problem of estimating the proportion of a finite population. First, we consider a fixed sample size method and derive an explicit sample size formula which ensures a mixed criterion of absolute and relative error
In this paper we prove the concavity of the $k$-trace functions, $Amapsto (text{Tr}_k[exp(H+ln A)])^{1/k}$, on the convex cone of all positive definite matrices. $text{Tr}_k[A]$ denotes the $k_{mathrm{th}}$ elementary symmetric polynomial of the eige
We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if the sequence is a realization of a stationary