ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain and electric-field control of spin-spin interactions in monolayer CrI$_3$

136   0   0.0 ( 0 )
 نشر من قبل Reza Asgari
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the impact of mechanical strains and a perpendicular electric field on the electronic and magnetic ground-state properties of two-dimensional monolayer CrI$_3$ using density functional theory. We propose a minimal spin model Hamiltonian, consisting of symmetric isotropic exchange interactions, magnetic anisotropy energy, and Dzyaloshinskii-Moriya (DM) interactions, to capture most pertinent magnetic properties of the system. We compute the mechanical strain and electric field dependence of various spin-spin interactions. Our results show that both the amplitudes and signs of the exchange interactions can be engineered by means of strain, while the electric field affects only their amplitudes. However, strain and electric fields affect both the directions and amplitudes of the DM vectors. The amplitude of the magnetic anisotropy energy can also be substantially modified by an applied strain. We show that in comparison with an electric field, strain can be more efficiently used to manipulate the magnetic and electronic properties of the system. Notably, such systematic tuning of the spin interactions is essential for the engineering of room-temperature spintronic nanodevices.



قيم البحث

اقرأ أيضاً

We find that in BaTiO$_3$ the phonon angular momentum is dominantly pointing in directions perpendicular to the electrical polarization. Therefore, external electric field in ferroelectric BaTiO$_3$ does not control only the direction of electrical p olarization, but also the direction of phonon angular momentum. This finding opens up the possibility for electric-field control of physical phenomena that rely on phonon angular momentum. We construct an intuitive model, based on our first-principles calculations, that captures the origin of the relationship between phonon angular momentum and electric polarization.
Intrinsic antiferromagnetism in van der Waals (vdW) monolayer (ML) crystals enriches the understanding regarding two-dimensional (2D) magnetic orders and holds special virtues over ferromagnetism in spintronic applications. However, the studies on in trinsic antiferromagnetism are sparse, owing to the lack of net magnetisation. In this study, by combining spin-polarised scanning tunnelling microscopy and first-principles calculations, we investigate the magnetism of vdW ML CrTe2, which has been successfully grown through molecular beam epitaxy. Surprisingly, we observe a stable antiferromagnetic (AFM) order at the atomic scale in the ML crystal, whose bulk is a strong ferromagnet, and correlate its imaged zigzag spin texture with the atomic lattice structure. The AFM order exhibits an intriguing noncollinear spin-flop transition under magnetic fields, consistent with its calculated moderate magnetic anisotropy. The findings of this study demonstrate the intricacy of 2D vdW magnetic materials and pave the way for their in-depth studies.
Valleytronics targets the exploitation of the additional degrees of freedom in materials where the energy of the carriers may assume several equal minimum values (valleys) at non-equivalent points of the reciprocal space. In single layers of transiti on metal dichalcogenides (TMDs) the lack of inversion symmetry, combined with a large spin-orbit interaction, leads to a conduction (valence) band with different spin-polarized minima (maxima) having equal energies. This offers the opportunity to manipulate information at the level of the charge (electrons or holes), spin (up or down) and crystal momentum (valley). Any implementation of these concepts, however, needs to consider the robustness of such degrees of freedom, which are deeply intertwined. Here we address the spin and valley relaxation dynamics of both electrons and holes with a combination of ultrafast optical spectroscopy techniques, and determine the individual characteristic relaxation times of charge, spin and valley in a MoS$_{2}$ monolayer. These results lay the foundations for understanding the mechanisms of spin and valley polarization loss in two-dimensional TMDs: spin/valley polarizations survive almost two-orders of magnitude longer for holes, where spin and valley dynamics are interlocked, than for electrons, where these degrees of freedom are decoupled. This may lead to novel approaches for the integration of materials with large spin-orbit in robust spintronic/valleytronic platforms.
Recent theoretical work has established the presence of hidden spin and orbital textures in non-magnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for $^{77}$Se, $^{125}$Te and $^{209}$Bi in Bi$_2$Se$_3$ and Bi$_2$Te$_3$. In conducting samples with current densities of $simeq 10^6, {rm A/cm}^2$, the splitting for Bi can reach $100, {rm kHz}$, which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi$_2$Se$_3$, this requires narrow wires of radius $lesssim 1, mu{rm m}$. We also discuss other potentially more promising candidate materials, such as SrRuO$_3$ and BaIr$_2$Ge$_2$, whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.
Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the LLG equation, with magnetostriction effect taken into account, is developed to explain the measured dynamics. Based on this model, conditions for strong electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا