ﻻ يوجد ملخص باللغة العربية
We have investigated an M1.3 limb flare, which develops as a magnetic loop/arch that fans out from an X-ray jet. Using Hinode/EIS, we found that the temperature increases with height to a value of over 10$^{7}$ K at the loop-top during the flare. The measured Doppler velocity (redshifts of 100$-$500 km s$^{-1}$) and the non-thermal velocity ($geq$100 km s$^{-1}$) from Fe XXIV also increase with loop height. The electron density increases from $0.3times10^{9}$ cm$^{-3}$ early in the flare rise to $1.3times10^{9}$ cm$^{-3}$ after the flare peak. The 3-D structure of the loop derived with STEREO/EUVI indicates that the strong redshift in the loop-top region is due to upflowing plasma originating from the jet. Both hard X-ray and soft X-ray emission from RHESSI were only seen as footpoint brightenings during the impulsive phase of the flare, then, soft X-ray emission moves to the loop-top in the decay phase. Based on the temperature and density measurements and theoretical cooling models, the temperature evolution of the flare arch is consistent with impulsive heating during the jet eruption followed by conductive cooling via evaporation and minor prolonged heating in the top of the fan loop. Investigating the magnetic field topology and squashing factor map from SDO/HMI, we conclude that the observed magnetic-fan flaring arch is mostly heated from low atmospheric reconnection accompanying the jet ejection, instead of from reconnection above the arch as expected in the standard flare model.
We present new constraints on the high-temperature emission measure of a non-flaring solar active region using observations from the recently flown Focusing Optics X-ray Solar Imager sounding rocket payload. FOXSI has performed the first focused hard
The physical processes causing energy exchange between the Suns hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly
Double coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in a large-scale current sheet in solar ares. Here we present a study on double coronal sources
In this work we investigate the thermal structure of an off-limb active region in various non-flaring areas, as it provides key information on the way these structures are heated. In particular, we concentrate in the very hot component (>3 MK) as it
We use coronal imaging observations with SDO/AIA, and Hinode/EIS spectral data, to explore the potential of narrow band EUV imaging data for diagnosing the presence of hot (T >~5MK) coronal plasma in active regions. We analyze observations of two act