ترغب بنشر مسار تعليمي؟ اضغط هنا

A Computational Analysis of Polarization on Indian and Pakistani Social Media

93   0   0.0 ( 0 )
 نشر من قبل Aman Tyagi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Between February 14, 2019 and March 4, 2019, a terrorist attack in Pulwama, Kashmir followed by retaliatory airstrikes led to rising tensions between India and Pakistan, two nuclear-armed countries. In this work, we examine polarizing messaging on Twitter during these events, particularly focusing on the positions of Indian and Pakistani politicians. We use a label propagation technique focused on hashtag co-occurrences to find polarizing tweets and users. Our analysis reveals that politicians in the ruling political party in India (BJP) used polarized hashtags and called for escalation of conflict more so than politicians from other parties. Our work offers the first analysis of how escalating tensions between India and Pakistan manifest on Twitter and provides a framework for studying polarizing messages.



قيم البحث

اقرأ أيضاً

During the COVID-19 pandemic, people started to discuss about pandemic-related topics on social media. On subreddit textit{r/COVID19positive}, a number of topics are discussed or being shared, including experience of those who got a positive test res ult, stories of those who presumably got infected, and questions asked regarding the pandemic and the disease. In this study, we try to understand, from a linguistic perspective, the nature of discussions on the subreddit. We found differences in linguistic characteristics (e.g. psychological, emotional and reasoning) across three different categories of topics. We also classified posts into the different categories using SOTA pre-trained language models. Such classification model can be used for pandemic-related research on social media.
To reach a broader audience and optimize traffic toward news articles, media outlets commonly run social media accounts and share their content with a short text summary. Despite its importance of writing a compelling message in sharing articles, the research community does not own a sufficient understanding of what kinds of editing strategies effectively promote audience engagement. In this study, we aim to fill the gap by analyzing media outlets current practices using a data-driven approach. We first build a parallel corpus of original news articles and their corresponding tweets that eight media outlets shared. Then, we explore how those media edited tweets against original headlines and the effects of such changes. To estimate the effects of editing news headlines for social media sharing in audience engagement, we present a systematic analysis that incorporates a causal inference technique with deep learning; using propensity score matching, it allows for estimating potential (dis-)advantages of an editing style compared to counterfactual cases where a similar news article is shared with a different style. According to the analyses of various editing styles, we report common and differing effects of the styles across the outlets. To understand the effects of various editing styles, media outlets could apply our easy-to-use tool by themselves.
Companies and financial investors are paying increasing attention to social consciousness in developing their corporate strategies and making investment decisions to support a sustainable economy for the future. Public discussion on incidents and eve nts -- controversies -- of companies can provide valuable insights on how well the company operates with regards to social consciousness and indicate the companys overall operational capability. However, there are challenges in evaluating the degree of a companys social consciousness and environmental sustainability due to the lack of systematic data. We introduce a system that utilizes Twitter data to detect and monitor controversial events and show their impact on market volatility. In our study, controversial events are identified from clustered tweets that share the same 5W terms and sentiment polarities of these clusters. Credible news links inside the event tweets are used to validate the truth of the event. A case study on the Starbucks Philadelphia arrests shows that this method can provide the desired functionality.
This paper is focused on the computational analysis of collective discourse, a collective behavior seen in non-expert content contributions in online social media. We collect and analyze a wide range of real-world collective discourse datasets from m ovie user reviews to microblogs and news headlines to scientific citations. We show that all these datasets exhibit diversity of perspective, a property seen in other collective systems and a criterion in wise crowds. Our experiments also confirm that the network of different perspective co-occurrences exhibits the small-world property with high clustering of different perspectives. Finally, we show that non-expert contributions in collective discourse can be used to answer simple questions that are otherwise hard to answer.
Social media is a rich source of rumours and corresponding community reactions. Rumours reflect different characteristics, some shared and some individual. We formulate the problem of classifying tweet level judgements of rumours as a supervised lear ning task. Both supervised and unsupervised domain adaptation are considered, in which tweets from a rumour are classified on the basis of other annotated rumours. We demonstrate how multi-task learning helps achieve good results on rumours from the 2011 England riots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا