ﻻ يوجد ملخص باللغة العربية
Randomized smoothing has achieved state-of-the-art certified robustness against $l_2$-norm adversarial attacks. However, it is not wholly resolved on how to find the optimal base classifier for randomized smoothing. In this work, we employ a Smoothed WEighted ENsembling (SWEEN) scheme to improve the performance of randomized smoothed classifiers. We show the ensembling generality that SWEEN can help achieve optimal certified robustness. Furthermore, theoretical analysis proves that the optimal SWEEN model can be obtained from training under mild assumptions. We also develop an adaptive prediction algorithm to reduce the prediction and certification cost of SWEEN models. Extensive experiments show that SWEEN models outperform the upper envelope of their corresponding candidate models by a large margin. Moreover, SWEEN models constructed using a few small models can achieve comparable performance to a single large model with a notable reduction in training time.
Deep learning models are prone to being fooled by imperceptible perturbations known as adversarial attacks. In this work, we study how equipping models with Test-time Transformation Ensembling (TTE) can work as a reliable defense against such attacks
Great advancement in deep neural networks (DNNs) has led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying th
A recent technique of randomized smoothing has shown that the worst-case (adversarial) $ell_2$-robustness can be transformed into the average-case Gaussian-robustness by smoothing a classifier, i.e., by considering the averaged prediction over Gaussi
Adversarial data examples have drawn significant attention from the machine learning and security communities. A line of work on tackling adversarial examples is certified robustness via randomized smoothing that can provide a theoretical robustness
While great progress has been made at making neural networks effective across a wide range of visual tasks, most models are surprisingly vulnerable. This frailness takes the form of small, carefully chosen perturbations of their input, known as adver