ﻻ يوجد ملخص باللغة العربية
We focus on the many-body eigenstates across a localization-delocalization phase transition. To characterize the robustness of the eigenstates, we introduce the eigenstate overlaps $mathcal{O}$ with respect to the different boundary conditions. In the ergodic phase, the average of eigenstate overlaps $bar{mathcal{O}}$ is exponential decay with the increase of the system size indicating the fragility of its eigenstates, and this can be considered as an eigenstate-version butterfly effect of the chaotic systems. For localized systems, $bar{mathcal{O}}$ is almost size-independent showing the strong robustness of the eigenstates and the broken of eigenstate thermalization hypothesis. In addition, we find that the response of eigenstates to the change of boundary conditions in many-body localized systems is identified with the single-particle wave functions in Anderson localized systems. This indicates that the eigenstates of the many-body localized systems, as the many-body wave functions, may be independent of each other. We demonstrate that this is consistent with the existence of a large number of quasilocal integrals of motion in the many-body localized phase. Our results provide a new method to study localized and delocalized systems from the perspective of eigenstates.
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding
The level statistics in the transition between delocalized and localized {phases of} many body interacting systems is {considered}. We recall the joint probability distribution for eigenvalues resulting from the statistical mechanics for energy level
We prove that all eigenstates of many-body localized symmetry protected topological systems with time reversal symmetry have four-fold degenerate entanglement spectra in the thermodynamic limit. To that end, we employ unitary quantum circuits where t
The many-body localization transition (MBLT) between ergodic and many-body localized phase in disordered interacting systems is a subject of much recent interest. Statistics of eigenenergies is known to be a powerful probe of crossovers between ergod
Numerical studies of amorphous silicon in harmonic approximation show that the highest 3.5% of vibrational normal modes are localized. As vibrational frequency increases through the boundary separating localized from delocalized modes, near omega_c=7