ﻻ يوجد ملخص باللغة العربية
We show that in a one-dimensional translationally invariant tight binding chain, non-dispersing wave packets can in general be realized as Floquet eigenstates -- or linear combinations thereof -- using a spatially inhomogeneous drive, which can be as simple as modulation on a single site. The recurrence time of these wave packets (their round trip time) locks in at rational ratios $sT/r$ of the driving period $T$, where $s,r$ are co-prime integers. Wave packets of different $s/r$ can co-exist under the same drive, yet travel at different speeds. They retain their spatial compactness either infinitely ($s/r=1$) or over long time ($s/r eq 1$). Discrete time translation symmetry is manifestly broken for $s eq 1$, reminiscent of Floquet time crystals. We further demonstrate how to reverse-engineer a drive protocol to reproduce a target Floquet micromotion, such as the free propagation of a wave packet, as if coming from a strictly linear energy spectrum. The variety of control schemes open up a new avenue for Floquet engineering in quantum information sciences.
We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we point out that a system subject
Electrons in a lattice exhibit time-periodic motion, known as Bloch oscillation, when subject to an additional static electric field. Here we show that a corresponding dynamics can occur upon replacing the spatially periodic potential by a time-perio
Satellites in electronic spectra are pure many-body effects, and their study has been of increasing interest in both experiment and theory. The presence of satellites due to plasmon excitations can be understood with simple models of electron-boson c
We show that the Nielsen-Ninomiya no-go theorem still holds on Floquet lattice: there is an equal number of right-handed and left-handed Weyl points in 3D Floquet lattice. However, in the adiabatic limit, where the time evolution of low-energy subspa
Floquet higher order topological insulators (FHOTIs) are a novel topological phase that can occur in periodically driven lattices. An appropriate experimental platform to realize FHOTIs has not yet been identified. We introduce a periodically-driven