ﻻ يوجد ملخص باللغة العربية
The ability to generate complex and realistic human body animations at scale, while following specific artistic constraints, has been a fundamental goal for the game and animation industry for decades. Popular techniques include key-framing, physics-based simulation, and database methods via motion graphs. Recently, motion generators based on deep learning have been introduced. Although these learning models can automatically generate highly intricate stylized motions of arbitrary length, they still lack user control. To this end, we introduce the problem of long-term inbetweening, which involves automatically synthesizing complex motions over a long time interval given very sparse keyframes by users. We identify a number of challenges related to this problem, including maintaining biomechanical and keyframe constraints, preserving natural motions, and designing the entire motion sequence holistically while considering all constraints. We introduce a biomechanically constrained generative adversarial network that performs long-term inbetweening of human motions, conditioned on keyframe constraints. This network uses a novel two-stage approach where it first predicts local motion in the form of joint angles, and then predicts global motion, i.e. the global path that the character follows. Since there are typically a number of possible motions that could satisfy the given user constraints, we also enable our network to generate a variety of outputs with a scheme that we call Motion DNA. This approach allows the user to manipulate and influence the output content by feeding seed motions (DNA) to the network. Trained with 79 classes of captured motion data, our network performs robustly on a variety of highly complex motion styles.
The high frame rate is a critical requirement for capturing fast human motions. In this setting, existing markerless image-based methods are constrained by the lighting requirement, the high data bandwidth and the consequent high computation overhead
Synthesizing 3D human motion plays an important role in many graphics applications as well as understanding human activity. While many efforts have been made on generating realistic and natural human motion, most approaches neglect the importance of
Action recognition is a relatively established task, where givenan input sequence of human motion, the goal is to predict its ac-tion category. This paper, on the other hand, considers a relativelynew problem, which could be thought of as an inverse
We present the first deep implicit 3D morphable model (i3DMM) of full heads. Unlike earlier morphable face models it not only captures identity-specific geometry, texture, and expressions of the frontal face, but also models the entire head, includin
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and vi