ﻻ يوجد ملخص باللغة العربية
Neutron scattering, specific heat and magnetisation measurements on both powders and single crystals reveal that Dy$_2$Ir$_2$O$_7$ realizes the fragmented monopole crystal state in which antiferromagnetic order and a Coulomb phase spin liquid co-inhabit. The measured residual entropy is that of a hard core dimer liquid, as predicted. Inclusion of Coulomb interactions allows for a quantitative description of both the thermodynamic data and the magnetisation dynamics, with the energy scale given by deconfined defects in the emergent ionic crystal. Our data reveal low energy excitations, as well as a large distribution of energy barriers down to low temperatures, while the magnetic response to an applied field suggests that domain wall pinning is important; results that call for further theoretical modelling.
Determining the fate of the Pauling entropy in the classical spin ice material Dy$_2$Ti$_2$O$_7$ with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in gen
We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an all in - all out antiferromagnetic phase
We report a study of the thermal conductivity $kappa$ of the spin-ice material Dy$_2$Ti$_2$O$_7$. From the anisotropic magnetic-field dependence of kappa$ and by additional measurements on the phononic reference compounds Y$_2$Ti$_2$O$_7$ and DyYTi$_
The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho comp
The elementary excitations of the spin-ice materials Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$ in zero field can be described as independent magnetic monopoles. We investigate the influence of these exotic excitations on the heat transport by measuring