ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression

58   0   0.0 ( 0 )
 نشر من قبل Nils L. Westhausen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces a dual-signal transformation LSTM network (DTLN) for real-time speech enhancement as part of the Deep Noise Suppression Challenge (DNS-Challenge). This approach combines a short-time Fourier transform (STFT) and a learned analysis and synthesis basis in a stacked-network approach with less than one million parameters. The model was trained on 500 h of noisy speech provided by the challenge organizers. The network is capable of real-time processing (one frame in, one frame out) and reaches competitive results. Combining these two types of signal transformations enables the DTLN to robustly extract information from magnitude spectra and incorporate phase information from the learned feature basis. The method shows state-of-the-art performance and outperforms the DNS-Challenge baseline by 0.24 points absolute in terms of the mean opinion score (MOS).



قيم البحث

اقرأ أيضاً

Due to the unprecedented breakthroughs brought about by deep learning, speech enhancement (SE) techniques have been developed rapidly and play an important role prior to acoustic modeling to mitigate noise effects on speech. To increase the perceptua l quality of speech, current state-of-the-art in the SE field adopts adversarial training by connecting an objective metric to the discriminator. However, there is no guarantee that optimizing the perceptual quality of speech will necessarily lead to improved automatic speech recognition (ASR) performance. In this study, we present TENET, a novel Time-reversal Enhancement NETwork, which leverages the transformation of an input noisy signal itself, i.e., the time-reversed version, in conjunction with the siamese network and complex dual-path transformer to promote SE performance for noise-robust ASR. Extensive experiments conducted on the Voicebank-DEMAND dataset show that TENET can achieve state-of-the-art results compared to a few top-of-the-line methods in terms of both SE and ASR evaluation metrics. To demonstrate the model generalization ability, we further evaluate TENET on the test set of scenarios contaminated with unseen noise, and the results also confirm the superiority of this promising method.
In recent years, deep neural networks (DNNs) were studied as an alternative to traditional acoustic echo cancellation (AEC) algorithms. The proposed models achieved remarkable performance for the separate tasks of AEC and residual echo suppression (R ES). A promising network topology is a fully convolutional recurrent network (FCRN) structure, which has already proven its performance on both noise suppression and AEC tasks, individually. However, the combination of AEC, postfiltering, and noise suppression to a single network typically leads to a noticeable decline in the quality of the near-end speech component due to the lack of a separate loss for echo estimation. In this paper, we propose a two-stage model (Y$^2$-Net) which consists of two FCRNs, each with two inputs and one output (Y-Net). The first stage (AEC) yields an echo estimate, which - as a novelty for a DNN AEC model - is further used by the second stage to perform RES and noise suppression. While the subjective listening test of the Interspeech 2021 AEC Challenge mostly yielded results close to the baseline, the proposed method scored an average improvement of 0.46 points over the baseline on the blind testset in double-talk on the instrumental metric DECMOS, provided by the challenge organizers.
In this paper we propose a lightweight model for frequency bandwidth extension of speech signals, increasing the sampling frequency from 8kHz to 16kHz while restoring the high frequency content to a level almost indistinguishable from the 16kHz groun d truth. The model architecture is based on SEANet (Sound EnhAncement Network), a wave-to-wave fully convolutional model, which uses a combination of feature losses and adversarial losses to reconstruct an enhanced version of the input speech. In addition, we propose a variant of SEANet that can be deployed on-device in streaming mode, achieving an architectural latency of 16ms. When profiled on a single core of a mobile CPU, processing one 16ms frame takes only 1.5ms. The low latency makes it viable for bi-directional voice communication systems.
Speech enhancement algorithms based on deep learning have been improved in terms of speech intelligibility and perceptual quality greatly. Many methods focus on enhancing the amplitude spectrum while reconstructing speech using the mixture phase. Sin ce the clean phase is very important and difficult to predict, the performance of these methods will be limited. Some researchers attempted to estimate the phase spectrum directly or indirectly, but the effect is not ideal. Recently, some studies proposed the complex-valued model and achieved state-of-the-art performance, such as deep complex convolution recurrent network (DCCRN). However, the computation of the model is huge. To reduce the complexity and further improve the performance, we propose a novel method using discrete cosine transform as the input in this paper, called deep cosine transform convolutional recurrent network (DCTCRN). Experimental results show that DCTCRN achieves state-of-the-art performance both on objective and subjective metrics. Compared with noisy mixtures, the mean opinion score (MOS) increased by 0.46 (2.86 to 3.32) absolute processed by the proposed model with only 2.86M parameters.
Speaker extraction is to extract a target speakers voice from multi-talker speech. It simulates humans cocktail party effect or the selective listening ability. The prior work mostly performs speaker extraction in frequency domain, then reconstructs the signal with some phase approximation. The inaccuracy of phase estimation is inherent to the frequency domain processing, that affects the quality of signal reconstruction. In this paper, we propose a time-domain speaker extraction network (TseNet) that doesnt decompose the speech signal into magnitude and phase spectrums, therefore, doesnt require phase estimation. The TseNet consists of a stack of dilated depthwise separable convolutional networks, that capture the long-range dependency of the speech signal with a manageable number of parameters. It is also conditioned on a reference voice from the target speaker, that is characterized by speaker i-vector, to perform the selective listening to the target speaker. Experiments show that the proposed TseNet achieves 16.3% and 7.0% relative improvements over the baseline in terms of signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) under open evaluation condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا