ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally-Driven Disc Winds as a Mechanism for X-ray Irradiation Heating in Black Hole X-ray Binaries: The Case Study of GX339-4

224   0   0.0 ( 0 )
 نشر من قبل Bailey Tetarenko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray irradiation heating of accretion discs in black hole X-ray binaries (BHXBs) plays a key role in regulating their outburst cycles. However, despite decades of theoretical and observational efforts, the physical mechanism(s) responsible for irradiating these discs remains largely unknown. We have built an observationally-based methodology to estimate the strength of irradiation of BHXB discs by combining multiwavelength X-ray and optical/IR data throughout transient outbursts. We apply this to $sim15$ yrs of activity in the Galactic BHXB GX339$-$4. Our findings suggest that the irradiation heating required by the optical data is large in this system. Direct illumination of the outer disc does not produce sufficient irradiation, but this should also produce a thermal-radiative wind which adds to the irradiation heating by scattering flux down onto the disc. However, analytic estimates of X-ray illumination from scattering in the wind is still not sufficient to produce the observed heating, even in combination with direct illumination. Either the analytic thermal-radiative wind models are underestimating the effect of the wind, or there are additional scattering mechanisms at work, such as magnetically-driven outflows, acting to increase the optical/IR flux. While wind-driven irradiation is likely a common feature among long-period BHXBs, fully understanding the driving mechanism(s) behind such a wind will require radiation-hydrodynamic simulations.



قيم البحث

اقرأ أيضاً

We have carried out radiation-hydrodynamic simulations of thermally-driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the range $rm{0.04 leq L_{acc}/L_{Edd} leq 1.0}$ and therefore cover most of the parameter space in which disc winds have been observed. Using a detailed Monte Carlo treatment of ionization and radiative transfer, we confirm two key results found in earlier simulations that were carried out in the optically thin limit: (i) the wind velocity -- and hence the maximum blueshift seen in wind-formed absorption lines -- increases with luminosity; (ii) the large-scale wind geometry is quasi-spherical, but observable absorption features are preferentially produced along high-column equatorial sightlines. In addition, we find that (iii) the wind efficiency always remains approximately constant at $rm{dot{M}_{wind}/dot{M}_{acc} simeq 2}$, a behaviour that is consistent with observations. We also present synthetic Fe XXV and Fe XXVI absorption line profiles for our simulated disc winds in order to illustrate the observational implications of our results.
193 - Joseph Neilsen 2013
In the last decade, high-resolution X-ray spectroscopy has revolutionized our understanding of the role of accretion disk winds in black hole X-ray binaries. Here I present a brief review of the state of wind studies in black hole X-ray binaries, foc using on recent arguments that disk winds are not only extremely massive, but also highly variable. I show how new and archival observations at high timing and spectral resolution continue to highlight the intricate links between the inner accretion flow, relativistic jets, and accretion disk winds. Finally, I discuss methods to infer the driving mechanisms of observed disk winds and their implications for connections between mass accretion and ejection processes.
Recurring outbursts associated with matter flowing onto compact stellar remnants (black-holes, neutron stars, white dwarfs) in close binary systems, provide strong test beds for constraining the poorly understood accretion process. The efficiency of angular momentum (and thus mass) transport in accretion discs, which has traditionally been encoded in the $alpha$-viscosity parameter, shapes the light-curves of these outbursts. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport find values of $alpha sim 0.1-0.2$ as required from observations of accreting white dwarfs. Equivalent $alpha$-viscosity parameters have never been estimated in discs around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light-curves of twenty-one black hole X-ray binary outbursts. Applying a Bayesian approach for a model of accretion allows us to determine corresponding $alpha$-viscosity parameters, directly from the light curves, to be $alpha sim$0.2--1. This result may be interpreted either as a strong intrinsic rate of angular momentum transport in the disc, which can only be sustained by the magneto-rotational instability if a large-scale magnetic field threads the disc, or as a direct indication that mass is being lost from the disc through substantial mass outflows strongly shaping the X-ray binary outburst. Furthermore, the lack of correlation between our estimates of $alpha$-viscosity and accretion state implies that such outflows can remove a significant fraction of disc mass in all black hole X-ray binary accretion states, favouring magnetically-driven winds over thermally-driven winds that require specific radiative conditions.
165 - M. Diaz Trigo , L. Boirin 2012
We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combinati on of thermal and radiative pressure (the latter being relevant at high luminosities) can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.
Essentially all low-mass X-ray binaries (LMXBs) in the soft state appear to drive powerful equatorial disc winds. A simple mechanism for driving such outflows involves X-ray heating of the top of the disc atmosphere to the Compton temperature. Beyond the Compton radius, the thermal speed exceeds the escape velocity, and mass loss is inevitable. Here, we present the first coupled radiation-hydrodynamic simulation of such thermally-driven disc winds. The main advance over previous modelling efforts is that the frequency-dependent attenuation of the irradiating SED is taken into account. We can therefore relax the approximation that the wind is optically thin throughout which is unlikely to hold in the crucial acceleration zone of the flow. The main remaining limitations of our simulations are connected to our treatment of optically thick regions. Adopting parameters representative of the wind-driving LMXB GRO~J1655-40, our radiation-hydrodynamic model yields a mass-loss rate that is $simeq5times$ lower than that suggested by pure hydrodynamic, optically thin models. This outflow rate still represents more than twice the accretion rate and agrees well with the mass-loss rate inferred from Chandra/HETG observations of GRO~J1655-40 at a time when the system had a similar luminosity to that adopted in our simulations. The Fe XXV and Fe XXVI Lyman $rm{alpha}~$ absorption line profiles observed in this state are slightly stronger than those predicted by our simulations but the qualitative agreement between observed and simulated outflow properties means that thermal driving is a viable mechanism for powering the disc winds seen in soft-state LMXBs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا