Unexpectedly large electron correlation measured in Auger spectra of ferromagnetic iron thin films: orbital-selected Coulomb and exchange contributions


الملخص بالإنكليزية

A set of electron-correlation energies as large as 10 eV have been measured for a magnetic 2ML Fefilm deposited on Ag(001). By exploiting the spin selectivity in angle-resolved Auger-photoelectroncoincidence spectroscopy and the Cini-Sawatzky theory, the core-valence-valence Auger spectrumof a spin-polarized system have been resolved: correlation energies have been determined for eachindividual combination of the two holes created in the four sub-bands involved in the decay: majorityand minority spin, as well asegandt2g. The energy difference between final states with paralleland antiparallel spin of the two emitted electrons is ascribed to the spin-flip energy for the final ionstate, thus disentangling the contributions of Coulomb and exchange interactions.

تحميل البحث