ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous CPU/GPU co-execution of CFD simulations on the POWER9 architecture: Application to airplane aerodynamics

74   0   0.0 ( 0 )
 نشر من قبل Guillermo Oyarzun
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High fidelity Computational Fluid Dynamics simulations are generally associated with large computing requirements, which are progressively acute with each new generation of supercomputers. However, significant research efforts are required to unlock the computing power of leading-edge systems, currently referred to as pre-Exascale systems, based on increasingly complex architectures. In this paper, we present the approach implemented in the computational mechanics code Alya. We describe in detail the parallelization strategy implemented to fully exploit the different levels of parallelism, together with a novel co-execution method for the efficient utilization of heterogeneous CPU/GPU architectures. The latter is based on a multi-code co-execution approach with a dynamic load balancing mechanism. The assessment of the performance of all the proposed strategies has been carried out for airplane simulations on the POWER9 architecture accelerated with NVIDIA Volta V100 GPUs.



قيم البحث

اقرأ أيضاً

Cutting-edge embedded system applications, such as self-driving cars and unmanned drone software, are reliant on integrated CPU/GPU platforms for their DNNs-driven workload, such as perception and other highly parallel components. In this work, we se t out to explore the hidden performance implication of GPU memory management methods of integrated CPU/GPU architecture. Through a series of experiments on micro-benchmarks and real-world workloads, we find that the performance under different memory management methods may vary according to application characteristics. Based on this observation, we develop a performance model that can predict system overhead for each memory management method based on application characteristics. Guided by the performance model, we further propose a runtime scheduler. By conducting per-task memory management policy switching and kernel overlapping, the scheduler can significantly relieve the system memory pressure and reduce the multitasking co-run response time. We have implemented and extensively evaluated our system prototype on the NVIDIA Jetson TX2, Drive PX2, and Xavier AGX platforms, using both Rodinia benchmark suite and two real-world case studies of drone software and autonomous driving software.
This paper investigates the multi-GPU performance of a 3D buoyancy driven cavity solver using MPI and OpenACC directives on different platforms. The paper shows that decomposing the total problem in different dimensions affects the strong scaling per formance significantly for the GPU. Without proper performance optimizations, it is shown that 1D domain decomposition scales poorly on multiple GPUs due to the noncontiguous memory access. The performance using whatever decompositions can be benefited from a series of performance optimizations in the paper. Since the buoyancy driven cavity code is latency-bounded on the clusters examined, a series of optimizations both agnostic and tailored to the platforms are designed to reduce the latency cost and improve memory throughput between hosts and devices efficiently. First, the parallel message packing/unpacking strategy developed for noncontiguous data movement between hosts and devices improves the overall performance by about a factor of 2. Second, transferring different data based on the stencil sizes for different variables further reduces the communication overhead. These two optimizations are general enough to be beneficial to stencil computations having ghost changes on all of the clusters tested. Third, GPUDirect is used to improve the communication on clusters which have the hardware and software support for direct communication between GPUs without staging CPUs memory. Finally, overlapping the communication and computations is shown to be not efficient on multi-GPUs if only using MPI or MPI+OpenACC. Although we believe our implementation has revealed enough overlap, the actual running does not utilize the overlap well due to a lack of asynchronous progression.
Modern deep learning systems like PyTorch and Tensorflow are able to train enormous models with billions (or trillions) of parameters on a distributed infrastructure. These systems require that the internal nodes have the same memory capacity and com pute performance. Unfortunately, most organizations, especially universities, have a piecemeal approach to purchasing computer systems resulting in a heterogeneous infrastructure, which cannot be used to compute large models. The present work describes HetSeq, a software package adapted from the popular PyTorch package that provides the capability to train large neural network models on heterogeneous infrastructure. Experiments with transformer translation and BERT language model shows that HetSeq scales over heterogeneous systems. HetSeq can be easily extended to other models like image classification. Package with supported document is publicly available at https://github.com/yifding/hetseq.
This paper is focused on improving multi-GPU performance of a research CFD code on structured grids. MPI and OpenACC directives are used to scale the code up to 16 GPUs. This paper shows that using 16 P100 GPUs and 16 V100 GPUs can be 30$times$ and 7 0$times$ faster than 16 Xeon CPU E5-2680v4 cores for three different test cases, respectively. A series of performance issues related to the scaling for the multi-block CFD code are addressed by applying various optimizations. Performance optimizations such as the pack/unpack message method, removing temporary arrays as arguments to procedure calls, allocating global memory for limiters and connected boundary data, reordering non-blocking MPI I_send/I_recv and Wait calls, reducing unnecessary implicit derived type member data movement between the host and the device and the use of GPUDirect can improve the compute utilization, memory throughput, and asynchronous progression in the multi-block CFD code using modern programming features.
Much of the current focus in high-performance computing is on multi-threading, multi-computing, and graphics processing unit (GPU) computing. However, vectorization and non-parallel optimization techniques, which can often be employed additionally, a re less frequently discussed. In this paper, we present an analysis of several optimizations done on both central processing unit (CPU) and GPU implementations of a particular computationally intensive Metropolis Monte Carlo algorithm. Explicit vectorization on the CPU and the equivalent, explicit memory coalescing, on the GPU are found to be critical to achieving good performance of this algorithm in both environments. The fully-optimized CPU version achieves a 9x to 12x speedup over the original CPU version, in addition to speedup from multi-threading. This is 2x faster than the fully-optimized GPU version.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا