ﻻ يوجد ملخص باللغة العربية
Monolayer transition metal dichalcogenide semiconductors, with versatile experimentally accessible exciton species, offer an interesting platform for investigating the interaction between excitons and a Fermi sea of charges. Using hexagonal boron nitride encapsulated monolayer MoSe2, we study the impact of charge density tuning on the ground and excited Rydberg states in the atomic layer. Consistent excitonpolaron behavior is revealed in both photoluminescence and reflection spectra of the A exciton 1s (A:1s) Rydberg state, in contrast to previous studies. The A:2s Rydberg state provides an opportunity to understand such interactions with greatly reduced exciton binding energy. We found that the impact of the Fermi sea becomes much more dramatic. With a photoluminescence upconversion technique, we further verify the 2s polaron-like behavior for the repulsive branch of B:2s exciton whose energy is well above the bare bandgap. Our studies show that the polaron-like interaction features are quite generic and highly robust, offering key insights into the dressed manybody state in a Fermi sea.
Transitions metal dichalcogenides (TMDs) are direct semiconductors in the atomic monolayer (ML) limit with fascinating optical and spin-valley properties. The strong optical absorption of up to 20 % for a single ML is governed by excitons, electron-h
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790
The emergence of transition metal dichalcogenides (TMD) as crystalline atomically thin semiconductors has created a tremendous amount of scientific and technological interest. Many novel device concepts have been proposed and realized (1-3). Nonethel
The strong excitonic effect in monolayer transition metal dichalcogenide (TMD) semiconductors has enabled many fascinating light-matter interaction phenomena. Examples include strongly coupled exciton-polaritons and nearly perfect atomic monolayer mi
We present a detailed investigation of the exciton and trion dynamics in naturally doped MoSe2 and WSe2 single atomic layers as a function of temperature in the range 10-300K under above band-gap laser excitation. By combining time-integrated and tim