ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser-nucleus interactions in the sudden regime

49   0   0.0 ( 0 )
 نشر من قبل Sergei Kobzak
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction between medium-weight nuclei and a strong zeptosecond laser pulse of MeV photons is investigated theoretically. Multiple absorption of photons competes with nuclear equilibration. We investigate the sudden regime. Here the rate of photon absorption is so strong that there is no time for the nucleus to fully equilibrate after each photon absorption process. We follow the temporal evolution of the system in terms of a set of rate equations. These account for dipole absorption and induced dipole emission, equilibration (modeled in terms of particle-hole states coupled by the residual nuclear interaction), and neutron decay (populating a chain of proton-rich nuclei). Our results are compared with earlier work addressing the adiabatic regime where equilibration is instantaneous. We predict the degree of excitation and the range of nuclei reached by neutron evaporation. These findings are relevant for planning future experiments.



قيم البحث

اقرأ أيضاً

102 - X.-G. Lu , Z. Ahmad Dar , F. Akbar 2021
With the advance of particle accelerator and detector technologies, the neutrino physics landscape is rapidly expanding. As neutrino oscillation experiments enter the intensity and precision frontiers, neutrino-nucleus interaction measurements are pr oviding crucial input. MINERvA is an experiment at Fermilab dedicated to the study of neutrino-nucleus interactions in the regime of incident neutrino energies from one to few GeV. The experiment recorded neutrino and antineutrino scattering data with the NuMI beamline from 2009 to 2019 using the Low-Energy and Medium-Energy beams that peak at 3 GeV and 6 GeV, respectively. This article reviews the broad spectrum of interesting nuclear and particle physics that MINERvA investigations have illuminated. The newfound, detailed knowledge of neutrino interactions with nuclear targets thereby obtained is proving essential to continued progress in the neutrino physics sector.
230 - T. Leitner , U. Mosel 2010
We present a study of neutrino-nucleus interactions at the T2K experiment based on the GiBUU transport model. The aim of T2K is to measure $ u_e$ appearance and $theta_{13}$, but it will also be able to do a precise measurement of $ u_mu$ disappearan ce. The former requires a good understanding of $pi^0$ production while the latter is closely connected with a good understanding of quasielastic scattering. For both processes we investigate the influence of nuclear effects and particular final-state interactions on the expected event rates taking into account the T2K detector setup.
Theoretical models of the (d,p) reaction are exploited for both nuclear astrophysics and spectroscopic studies in nuclear physics. Usually, these reaction models use local optical model potentials to describe the nucleon- and deuteron-target interact ions. Within such a framework the importance of the deuteron D-state in low-energy reactions is normally associated with spin observables and tensor polarization effects - with very minimal influence on differential cross sections. In contrast, recent work that includes the inherent nonlocality of the nucleon optical model potentials in the Johnson-Tandy adiabatic-model description of the (d,p) transition amplitude, which accounts for deuteron break-up effects, shows sensitivity of the reaction to the large n-p relative momentum content of the deuteron wave function. The dominance of the deuteron D-state component at such high momenta leads to significant sensitivity of calculated (d,p) cross sections and deduced spectroscopic factors to the choice of deuteron wave function [Phys. Rev. Lett. {bf 117}, 162502 (2016)]. We present details of the Johnson-Tandy adiabatic model of the (d,p) transfer reaction generalized to include the deuteron D-state in the presence of nonlocal nucleon-target interactions. We present exact calculations in this model and compare these to approximate (leading-order) solutions. The latter, approximate solutions can be interpreted in terms of local optical potentials, but evaluated at a shifted value of the energy in the nucleon-target system. This energy shift is increased when including the D-state contribution. We also study the expected dependence of the D-state effects on the separation energy and orbital angular momentum of the transferred nucleon. Their influence on the spectroscopic information extracted from (d,p) reactions is quantified for a particular case of astrophysical significance.
The nuclear rainbow observed in the elastic $alpha$-nucleus and light heavy-ion scattering is proven to be due to the refraction of the scattering wave by a deep, attractive real optical potential. The nuclear rainbow pattern, established as a broad oscillation of the Airy minima in the elastic cross section, originates from an interference of the refracted far-side scattering amplitudes. It is natural to expect a similar rainbow pattern also in the inelastic scattering of a nucleus-nucleus system that exhibits a pronounced rainbow pattern in the elastic channel. Although some feature of the nuclear rainbow in the inelastic nucleus-nucleus scattering was observed in experiment, the measured inelastic cross sections exhibit much weaker rainbow pattern, where the Airy oscillation is suppressed and smeared out. To investigate this effect, a novel method of the near-far decomposition of the inelastic scattering amplitude is proposed to explicitly reveal the coupled partial-wave contributions to the inelastic cross section. Using the new decomposition method, our coupled channel analysis of the elastic and inelastic $^{12}$C+$^{12}$C and $^{16}$O+$^{12}$C scattering at the refractive energies shows unambiguously that the suppression of the nuclear rainbow pattern in the inelastic scattering cross section is caused by a destructive interference of the partial waves of different multipoles. However, the inelastic scattering remains strongly refractive in these cases, where the far-side scattering is dominant at medium and large angles like that observed in the elastic scattering.
Large-angle elastic scattering of alpha-particle and strongly-bound light nuclei at a few tens MeV/nucleon has shown the pattern of rainbow scattering. This interesting process was shown to involve a significant overlap of the two colliding nuclei, w ith the total nuclear density well above the saturation density of normal nuclear matter (NM). For a microscopic calculation of the nucleus-nucleus potential within the folding model, we have developed a density dependent nucleon-nucleon (NN) interaction based on the G-matrix interaction M3Y. Our folding analysis of the refractive 4He, 12C, and 16O elastic scattering shows consistently that the NM incompressibility K should be around 250 MeV which implies a rather soft nuclear Equation of State (EOS). To probe the symmetry part of the nuclear EOS, we have used the isovector coupling to link the isospin dependence of the proton optical potential to the cross section of (p,n) charge-exchange reactions exciting the isobaric analog states in nuclei of different mass regions. With the isospin dependence of the NN interaction fine tuned to reproduce the charge exchange data, a realistic estimate of the NM symmetry energy has been made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا