ﻻ يوجد ملخص باللغة العربية
We report a broadband terahertz time-domain spectroscopy (THz-TDS) which enables twenty vibrational modes of adenosine nucleoside to be resolved in a wide frequency range of 1-20 THz. The observed spectroscopic features of adenosine are in good agreement with the published spectra obtained using Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. This much-extended bandwidth leads to enhanced material characterization capability as it provides spectroscopic information on both intra-molecular and inter-molecular vibrations. In addition, we also report a low-cost Frequency Modulation Continuous Wave (FMCW) imaging system which has a fast measurement speed of 40,000 waveforms per second. Cross-sectional imaging capability through cardboard has also been demonstrated using its excellent penetration capability at a frequency range of 76-81 GHz. We anticipate that the integration of these two complementary imaging technologies would be highly desirable for many real-world applications because it provides both spectroscopic discrimination and penetration capabilities in a single instrument.
Terahertz (THz) Time domain spectroscopy (THz-TDS) is a broadband spectroscopic technique spreading its uses in multiple fields: in science from material science to biology, in industry where it measures the thickness of a paint layer during the pain
Due to its fast and high resolution characteristics, dual-comb spectroscopy has attracted an increasing amount of interest since its first demonstration. In the terahertz frequency range where abundant absorption lines (finger prints) of molecules ar
Fourier back plane (FBP) imaging technique has been widely used in the frontier research of nanophotonics. In this paper, based on the diffraction theory and wave front transformation principle, the FBP imaging basic principle, the setup realization
Terahertz time-domain spectroscopy (THz TDS) is a well-known tool for material analysis in the terahertz frequency band. One crucial system component in every time-domain spectrometer is the delay line which is necessary to accomplish the sampling of
In transmission-mode terahertz time-domain spectroscopy (THz-TDS), the thickness of a sample is a critical factor that determines an amount of the interaction between terahertz waves and bulk material. If the interaction length is too small, a change