ﻻ يوجد ملخص باللغة العربية
Log-based predictive maintenance of computing centers is a main concern regarding the worldwide computing grid that supports the CERN (European Organization for Nuclear Research) physics experiments. A log, as event-oriented adhoc information, is quite often given as unstructured big data. Log data processing is a time-consuming computational task. The goal is to grab essential information from a continuously changeable grid environment to construct a classification model. Evolving granular classifiers are suited to learn from time-varying log streams and, therefore, perform online classification of the severity of anomalies. We formulated a 4-class online anomaly classification problem, and employed time windows between landmarks and two granular computing methods, namely, Fuzzy-set-Based evolving Modeling (FBeM) and evolving Granular Neural Network (eGNN), to model and monitor logging activity rate. The results of classification are of utmost importance for predictive maintenance because priority can be given to specific time intervals in which the classifier indicates the existence of high or medium severity anomalies.
Detection of anomalous behaviors in data centers is crucial to predictive maintenance and data safety. With data centers, we mean any computer network that allows users to transmit and exchange data and information. In particular, we focus on the Tie
The research in anomaly detection lacks a unified definition of what represents an anomalous instance. Discrepancies in the nature itself of an anomaly lead to multiple paradigms of algorithms design and experimentation. Predictive maintenance is a s
Reliable detection of anomalies is crucial when deploying machine learning models in practice, but remains challenging due to the lack of labeled data. To tackle this challenge, contrastive learning approaches are becoming increasingly popular, given
Unsupervised anomaly discovery in stream data is a research topic with many practical applications. However, in many cases, it is not easy to collect enough training data with labeled anomalies for supervised learning of an anomaly detector in order
A primary motivation for our research in digital ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic pr