Robust Magnetoelectric Effect in Decorated Graphene/In2Se3 Heterostructure


الملخص بالإنكليزية

Magnetoelectric effect is a fundamental physics phenomenon that synergizes electric and magnetic degrees of freedom to generate distinct material responses like electrically tuned magnetism, which serves as a key foundation of the emerging field of spintronics. Here, we show by first-principles studies that ferroelectric (FE) polarization of an In2Se3 monolayer can modulate the magnetism of an adjacent transition-metal (TM) decorated graphene layer via an FE induced electronic transition. The TM nonbonding d-orbital shifts downward and hybridizes with carbon p states near the Fermi level, suppressing the magnetic moment, under one FE polarization, but on reversed FE polarization this TM d-orbital moves upward, restoring the original magnetic moment. This finding of robust magnetoelectric effect in TM decorated graphene/In2Se3 heterostructure offers powerful insights and a promising avenue for experimental exploration of FE controlled magnetism in 2D materials.

تحميل البحث