ﻻ يوجد ملخص باللغة العربية
We revisit the consistency of torus partition functions in (1+1)$d$ fermionic conformal field theories, combining traditional ingredients of modular invariance/covariance with a modernized understanding of bosonization/fermionization dualities. Various lessons can be learned by simply examining the oft-ignored Ramond sector. For several extremal/kinky modular functions in the bootstrap literature, we can either rule out or identify the underlying theory. We also revisit the ${cal N} = 1$ Maloney-Witten partition function by calculating the spectrum in the Ramond sector, and further extending it to include the modular sum of seed Ramond characters. Finally, we perform the full ${cal N} = 1$ RNS modular bootstrap and obtain new universal results on the existence of relevant deformations preserving different amounts of supersymmetry.
Light-cone gauge superstring theory in noncritical dimensions corresponds to a worldsheet theory with nonstandard longitudinal part in the conformal gauge. The longitudinal part of the worldsheet theory is a superconformal field theory called X^{pm}
A new mechanism, valid for any smooth version of the Randall-Sundrum model, of getting localized massless vector field on the brane is described here. This is obtained by dimensional reduction of a five dimension massive two form, or Kalb-Ramond fiel
As we have shown in the previous work, using the formalism of matrix and eigenvalue models, to a given classical algebraic curve one can associate an infinite family of quantum curves, which are in one-to-one correspondence with singular vectors of a
In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a
A superspace with manifest T-duality including Ramond-Ramond gauge fields is presented. The superspace is defined by the double nondegenerate super-Poincare algebras where Ramond-Ramond charges are introduced by central extension. This formalism allo