ﻻ يوجد ملخص باللغة العربية
Lattice-based cryptography is not only for thwarting future quantum computers, and is also the basis of Fully Homomorphic Encryption. Motivated from the advantage of graph homomorphisms we combine graph homomorphisms with graph total colorings together for designing new types of graph homomorphisms: totally-colored graph homomorphisms, graphic-lattice homomorphisms from sets to sets, every-zero graphic group homomorphisms from sets to sets. Our graph-homomorphism lattices are made up by graph homomorphisms. These new homomorphisms induce some problems of graph theory, for example, Number String Decomposition and Graph Homomorphism Problem.
A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with col
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$
Lattice theory has been believed to resist classical computers and quantum computers. Since there are connections between traditional lattices and graphic lattices, it is meaningful to research graphic lattices. We define the so-called ice-flower sys
In this paper, we study the achromatic and the pseudoachromatic numbers of planar and outerplanar graphs as well as planar graphs of girth 4 and graphs embedded on a surface. We give asymptotically tight results and lower bounds for maximal embedded graphs.
A proper edge coloring of a graph $G$ with colors $1,2,dots,t$ is called a emph{cyclic interval $t$-coloring} if for each vertex $v$ of $G$ the edges incident to $v$ are colored by consecutive colors, under the condition that color $1$ is considered