ﻻ يوجد ملخص باللغة العربية
Cardiovascular diseases are one of the most severe causes of mortality, taking a heavy toll of lives annually throughout the world. The continuous monitoring of blood pressure seems to be the most viable option, but this demands an invasive process, bringing about several layers of complexities. This motivates us to develop a method to predict the continuous arterial blood pressure (ABP) waveform through a non-invasive approach using photoplethysmogram (PPG) signals. In addition we explore the advantage of deep learning as it would free us from sticking to ideally shaped PPG signals only, by making handcrafted feature computation irrelevant, which is a shortcoming of the existing approaches. Thus, we present, PPG2ABP, a deep learning based method, that manages to predict the continuous ABP waveform from the input PPG signal, with a mean absolute error of 4.604 mmHg, preserving the shape, magnitude and phase in unison. However, the more astounding success of PPG2ABP turns out to be that the computed values of DBP, MAP and SBP from the predicted ABP waveform outperforms the existing works under several metrics, despite that PPG2ABP is not explicitly trained to do so.
Blood Pressure (BP) is one of the four primary vital signs indicating the status of the bodys vital (life-sustaining) functions. BP is difficult to continuously monitor using a sphygmomanometer (i.e. a blood pressure cuff), especially in everyday-set
The accurate measurement of blood pressure (BP) is an important prerequisite for the reliable diagnosis and efficient management of hypertension and other medical conditions. Office Blood Pressure Measurement (OBP) is a technique performed in-office
Malaria is a female anopheles mosquito-bite inflicted life-threatening disease which is considered endemic in many parts of the world. This article focuses on improving malaria detection from patches segmented from microscopic images of red blood cel
Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as we
Graph convolutional neural networks (GCNNs) are a powerful extension of deep learning techniques to graph-structured data problems. We empirically evaluate several pooling methods for GCNNs, and combinations of those graph pooling methods with three