Probing the supersolid order via high-energy scattering: analytical relations among response, density modulation, and superfluid fraction


الملخص بالإنكليزية

High-energy scattering spectroscopy is a widely-established technique for probing the characteristic properties of complex physical systems. Motivated by the recent observation of long-sought supersolid states in dipolar quantum Bose gases, I investigate the general relationships existing between the density contrast, the superfluid fraction, and the response to a high-energy scattering probe of density-modulated states within a classical-field approach. I focus on the two extreme regimes of shallow and deep supersolids, which are of particular interest in describing the phase transitions of the supersolid to a uniform superfluid and an incoherent crystal state, respectively. Using relevant Ansatze for the fields of dipolar supersolid states in these regimes, I specify and illustrate the scaling laws relating the three observables. This work was first prompted to develop an intuitive understanding of a concomitant study based on experiments and mean-field numerical simulations. Beyond this specific application, this works provides a simple and general framework to describe density-modulated states, and in particular the intriguing case of supersolids. It describes key properties characterizing the supersolid order and highlights new possibilities for probing such properties based on high-energy scattering response.

تحميل البحث