ﻻ يوجد ملخص باللغة العربية
In this paper, a novel hierarchical beamtracking approach, which is suitable for terahertz (THz) wireless systems, is presented. The main idea is to employ a prediction based algorithm with a multi-resolution codebook, in order to decrease the required overhead of tracking and increase its robustness. The efficiency of the algorithm is evaluated in terms of the average number of pilots and mean square error (MSE) and is compared with the corresponding performance of the fast channel tracking (FCT) algorithm. Our results highlight the superiority of the proposed approach in comparison with FCT, in terms of tracking efficiency with low overhead.
Terahertz spectrum is being researched upon to provide ultra-high throughput radio links for indoor applications, e.g., virtual reality (VR), etc. as well as outdoor applications, e.g., backhaul links, etc. This paper investigates a monopulse-based b
Millimeter-wave is one of the technologies powering the new generation of wireless communication systems. To compensate the high path-loss, millimeter-wave devices need to use highly directional antennas. Consequently, beam misalignment causes strong
Terahertz (THz) communication is now being considered as one of possible technologies for the sixth generation (6G) wireless communication systems. In this paper, a novel three-dimensional (3D) space-time-frequency non-stationary theoretical channel
This paper presents an analytical pathloss model for reconfigurable intelligent surface (RIS) assisted terahertz (THz) wireless systems. Specifically, the model accommodates both the THz link and the RIS particularities. Finally, we derive a closed-f
UAV communications based on an antenna array entail a beam tracking technology for reliable link acquisition. Unlike conventional cellular communication, beam tracking in UAV communication addresses new issues such as mobility and abrupt channel disc