ﻻ يوجد ملخص باللغة العربية
We use continuum simulations to study the impact of friction on the ordering of defects in an active nematic. Even in a frictionless system, +1/2 defects tend to align side-by-side and orient antiparallel reflecting their propensity to form, and circulate with, flow vortices. Increasing friction enhances the effectiveness of the defect-defect interactions, and defects form dynamically evolving, large scale, positionally and orientationally-ordered structures which can be explained as a competition between hexagonal packing, preferred by the -1/2 defects, and rectangular packing preferred by the +1/2 defects.
We report on memory effects involved in the transient frictional response of a contact interface between a silicone rubber and a spherical glass probe when it is perturbed by changes in the orientation of the driving motion or by velocity steps. From
Shear thickening of particle suspensions is characterized by a transition between lubricated and frictional contacts between the particles. Using 3D numerical simulations, we study how the inter-particle friction coefficient influences the effective
Yielding behavior is well known in attractive colloidal suspensions. Adhesive non-Brownian suspensions, in which the interparticle bonds are due to finite-size contacts, also show yielding behavior. We use a combination of steady-state, oscillatory a
Force-driven translocation of a macromolecule through a nanopore is investigated by taking into account the monomer-pore friction as well as the crowding of monomers on the {it trans} - side of the membrane which counterbalance the driving force acti
We use continuum simulations to study the impact of anisotropic hydrodynamic friction on the emergent flows of active nematics. We show that, depending on whether the active particles align with or tumble in their collectively self-induced flows, ani