ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically pumped spin polarization as a probe of many-body thermalization

60   0   0.0 ( 0 )
 نشر من قبل Carlos Meriles Prof
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between disorder and transport is a problem central to the understanding of a broad range of physical processes, most notably the ability of a system to reach thermal equilibrium. Disorder and many body interactions are known to compete, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength, which we attribute to effective carbon-carbon interactions mediated by the electronic spin ensemble. In particular, observations across the full range of hyperfine couplings indicate the nuclear spin diffusion constant takes values up to two orders of magnitude greater than that expected from homo-nuclear spin couplings. Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.



قيم البحث

اقرأ أيضاً

Recent theoretical and experiments have explored the use of entangled photons as a spectroscopic probe of material systems. We develop here a theoretical description for entropy production in the scattering of an entangled biphoton state within an op tical cavity. We develop this using perturbation theory by expanding the biphoton scattering matrix in terms of single-photon terms in which we introduce the photon-photon interaction via a complex coupling constant, $xi$. We show that the von Neumann entropy provides a succinct measure of this interaction. We then develop a microscopic model and show that in the limit of fast fluctuations, the entanglement entropy vanishes whereas in the limit the coupling is homogeneous broadened, the entanglement entropy depends upon the magnitude of the fluctuations and reaches a maximum.
162 - Yumeng Song , Yu Tian , Zhiyi Hu 2019
The nitrogen-vacancy (N-V) center in diamond is a widely-used platform for quantum information processing and metrology. The electron-spin state of N-V center could be initialized and readout optically, and manipulated by resonate microwave fields. I n this work, we analyze the dependence of electron-spin initialization on widths of laser pulses. We build a numerical model to simulate this process and verify the simulation results in experiment. Both simulations and experiments reveal a fact that shorter laser pulses are helpful to the electron-spin polarization. We therefore propose to use extremely-short laser pulses for electron-spin initialization. In this new scheme, the spin-state contrast could be improved about 10% in experiment by using laser pulses as short as 4 ns in width. Furthermore, we provide a mechanism to explain this effect which is due to the occupation time in the meta-stable spin-singlet states of N-V center. Our new scheme is applicable in a broad range of NV-based applications in the future.
We present a method to show that low-energy states of quantum many-body interacting systems in one spatial dimension are nonlocal. We assign a Bell inequality to the Hamiltonian of the system in a natural way and we efficiently find its classical bou nd using dynamic programming. The Bell inequality is such that its quantum value for a given state, and for appropriate observables, corresponds to the energy of the state. Thus, the presence of nonlocal correlations can be certified for states of low enough energy. The method can also be used to optimize certain Bell inequalities: in the translationally invariant (TI) case, we provide an exponentially faster computation of the classical bound and analytically closed expressions of the quantum value for appropriate observables and Hamiltonians. The power and generality of our method is illustrated through four representative examples: a tight TI inequality for 8 parties, a quasi TI uniparametric inequality for any even number of parties, ground states of spin-glass systems, and a non-integrable interacting XXZ-like Hamiltonian. Our work opens the possibility for the use of low-energy states of commonly studied Hamiltonians as multipartite resources for quantum information protocols that require nonlocality.
We develop a scheme for engineering genuine thermal states in analog quantum simulation platforms by coupling local degrees of freedom to driven, dissipative ancilla pseudospins. We demonstrate the scheme in a many-body quantum spin lattice simulatio n setting. A Born-Markov master equation describing the dynamics of the many-body system is developed, and we show that if the ancilla energies are periodically modulated, with a carefully chosen hierarchy of timescales, one can effectively thermalize the many-body system. Through analysis of the time-dependent dynamical generator, we determine the conditions under which the true thermal state is an approximate dynamical fixed point for general system Hamiltonians. Finally, we evaluate the thermalization protocol through numerical simulation and discuss prospects for implementation on current quantum simulation hardware.
In statistical mechanics, a small system exchanges conserved quantities---heat, particles, electric charge, etc.---with a bath. The small system thermalizes to the canonical ensemble, or the grand canonical ensemble, etc., depending on the conserved quantities. The conserved quantities are represented by operators usually assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small systems long-time state was dubbed ``the non-Abelian thermal state (NATS). We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which form the system of interest. The conserved quantities manifest as spin components. Heisenberg interactions push the conserved quantities between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting conserved quantities from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا