ﻻ يوجد ملخص باللغة العربية
Differential categories provide an axiomatization of the basics of differentiation and categorical models of differential linear logic. As differentiation is an important tool throughout quantum mechanics and quantum information, it makes sense to study applications of the theory of differential categories to categorical quantum foundations. In categorical quantum foundations, compact closed categories (and therefore traced symmetric monoidal categories) are one of the main objects of study, in particular the category of finite-dimensional Hilbert spaces FHilb. In this paper, we will explain why the only differential category structure on FHilb is the trivial one. This follows from a sort of in-compatibility between the trace of FHilb and possible differential category structure. That said, there are interesting non-trivial examples of traced/compact closed differential categories, which we also discuss. The goal of this paper is to introduce differential categories to the broader categorical quantum foundation community and hopefully open the door to further work in combining these two fields. While the main result of this paper may seem somewhat negative in achieving this goal, we discuss interesting potential applications of differential categories to categorical quantum foundations.
This paper presents an observation that under reasonable conditions, many partial differential equations from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal re
It is shown that in semi-classical electrodynamics, which describes how electrically charged particles move according to the laws of quantum mechanics under the influence of a prescribed classical electromagnetic field, only a restricted class of gau
Starting with a k-linear or DG category admitting a (homotopy) Serre functor, we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of the numerical K-group of the original category. We also define a 2-categorical analogue of
We study both numerically and analytically the possibility of using an adiabatic passage control method to construct a Mach-Zehnder interferometer (MZI) for Bose-Einstein condensates (BECs) in the time domain, in exact one-to-one correspondence with
In recent years philosophers of science have explored categorical equivalence as a promising criterion for when two (physical) theories are equivalent. On the one hand, philosophers have presented several examples of theories whose relationships seem