ﻻ يوجد ملخص باللغة العربية
Controlling the thermal conductivity of semiconductors is of practical interest in optimizing the performance of thermoelectric and phononic devices. The insertion of inclusions of nanometer size in a semiconductor is an effective means of achieving such control; it has been proposed that the thermal conductivity of silicon could be reduced to 1 W/m/K using this approach and that a minimum in the heat conductivity would be reached for some optimal size of the inclusions. Yet the practical verification of this design rule has been limited. In this work, we address this question by studying the thermal properties of silicon metalattices that consist of a periodic distribution of spherical inclusions with radii from 7 to 30 nm, embedded into silicon. Experimental measurements confirm that the thermal conductivity of silicon metalattices is as low as 1 W/m/K for silica inclusions, and that this value can be further reduced to 0.16 W/m/K for silicon metalattices with empty pores. A detailed model of ballistic phonon transport suggests that this thermal conductivity is close to the lowest achievable by tuning the radius and spacing of the periodic inhomogeneities. This study is a significant step in elucidating the scaling laws that dictate ballistic heat transport at the nanoscale in silicon and other semiconductors.
We studied the thermal conductivity of graphene phononic crystal (GPnC), also named as graphene nanomesh, by molecular dynamics simulations. The dependences of thermal conductivity of GPnCs on both length and temperature are investigated. It is found
Water mediates electrostatic interactions via the orientation of its dipoles around ions, molecules, and interfaces. This induced water polarization consequently influences multiple phenomena. In particular, water polarization modulated by nanoconfin
We report a study of magnetism and magnetic transitions of hexagonal ErMnO$_3$ single crystals by magnetization, specific heat and heat transport measurements. Magnetization data show that the $c$-axis magnetic field induces three magnetic transition
Transmission electron microscopy, scanning transmission electron tomography, and electron energy loss spectroscopy were used to characterize three-dimensional artificial Si nanostructures called metalattices, focusing on Si metalattices synthesized b
We present a theoretical analysis of the effect of dielectric confinement on the Coulomb interaction in dielectrically modulated quantum structures. We discuss the implications of the strong enhancement of the electron-hole and electron-electron coup