ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing the Surprising Variability in Word Embedding Stability Across Languages

264   0   0.0 ( 0 )
 نشر من قبل Laura (Wendlandt) Burdick
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Word embeddings are powerful representations that form the foundation of many natural language processing architectures, both in English and in other languages. To gain further insight into word embeddings, we explore their stability (e.g., overlap between the nearest neighbors of a word in different embedding spaces) in diverse languages. We discuss linguistic properties that are related to stability, drawing out insights about correlations with affixing, language gender systems, and other features. This has implications for embedding use, particularly in research that uses them to study language trends.



قيم البحث

اقرأ أيضاً

Complex Word Identification (CWI) is the task of identifying which words or phrases in a sentence are difficult to understand by a target audience. The latest CWI Shared Task released data for two settings: monolingual (i.e. train and test in the sam e language) and cross-lingual (i.e. test in a language not seen during training). The best monolingual models relied on language-dependent features, which do not generalise in the cross-lingual setting, while the best cross-lingual model used neural networks with multi-task learning. In this paper, we present monolingual and cross-lingual CWI models that perform as well as (or better than) most models submitted to the latest CWI Shared Task. We show that carefully selected features and simple learning models can achieve state-of-the-art performance, and result in strong baselines for future development in this area. Finally, we discuss how inconsistencies in the annotation of the data can explain some of the results obtained.
From Word2Vec to GloVe, word embedding models have played key roles in the current state-of-the-art results achieved in Natural Language Processing. Designed to give significant and unique vectorized representations of words and entities, those model s have proven to efficiently extract similarities and establish relationships reflecting semantic and contextual meaning among words and entities. African Languages, representing more than 31% of the worldwide spoken languages, have recently been subject to lots of research. However, to the best of our knowledge, there are currently very few to none word embedding models for those languages words and entities, and none for the languages under study in this paper. After describing Glove, Word2Vec, and Poincare embeddings functionalities, we build Word2Vec and Poincare word embedding models for Fon and Nobiin, which show promising results. We test the applicability of transfer learning between these models as a landmark for African Languages to jointly involve in mitigating the scarcity of their resources, and attempt to provide linguistic and social interpretations of our results. Our main contribution is to arouse more interest in creating word embedding models proper to African Languages, ready for use, and that can significantly improve the performances of Natural Language Processing downstream tasks on them. The official repository and implementation is at https://github.com/bonaventuredossou/afrivec
Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train t hem on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models.
Word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applications. Uncontextualized word embeddings are used in many NLP tasks today, especially in resource-limited settings where high memo ry capacity and GPUs are not available. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the common conditions that seem to be required for making performant word embeddings. We believe that the theoretical findings in this paper can provide a basis for more informed development of future models.
Recent studies have introduced methods for learning acoustic word embeddings (AWEs)---fixed-size vector representations of words which encode their acoustic features. Despite the widespread use of AWEs in speech processing research, they have only be en evaluated quantitatively in their ability to discriminate between whole word tokens. To better understand the applications of AWEs in various downstream tasks and in cognitive modeling, we need to analyze the representation spaces of AWEs. Here we analyze basic properties of AWE spaces learned by a sequence-to-sequence encoder-decoder model in six typologically diverse languages. We first show that these AWEs preserve some information about words absolute duration and speaker. At the same time, the representation space of these AWEs is organized such that the distance between words embeddings increases with those words phonetic dissimilarity. Finally, the AWEs exhibit a word onset bias, similar to patterns reported in various studies on human speech processing and lexical access. We argue this is a promising result and encourage further evaluation of AWEs as a potentially useful tool in cognitive science, which could provide a link between speech processing and lexical memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا