ترغب بنشر مسار تعليمي؟ اضغط هنا

TRP: Trained Rank Pruning for Efficient Deep Neural Networks

159   0   0.0 ( 0 )
 نشر من قبل Yuhui Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To enable DNNs on edge devices like mobile phones, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pretrained model by low-rank decomposition; however, small approximation errors in parameters can ripple over a large prediction loss. As a result, performance usually drops significantly and a sophisticated effort on fine-tuning is required to recover accuracy. Apparently, it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training process. We propose Trained Rank Pruning (TRP), which alternates between low rank approximation and training. TRP maintains the capacity of the original network while imposing low-rank constraints during training. A nuclear regularization optimized by stochastic sub-gradient descent is utilized to further promote low rank in TRP. The TRP trained network inherently has a low-rank structure, and is approximated with negligible performance loss, thus eliminating the fine-tuning process after low rank decomposition. The proposed method is comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation.



قيم البحث

اقرأ أيضاً

121 - Yuhui Xu , Yuxi Li , Shuai Zhang 2018
The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, qua ntization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation. Code is available: https://github.com/yuhuixu1993/Trained-Rank-Pruning
183 - Yuhui Xu , Yuxi Li , Shuai Zhang 2019
To accelerate DNNs inference, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposit ion; however, small approximation errors in parameters can ripple over a large prediction loss. Apparently, it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training process. We propose Trained Rank Pruning (TRP), which alternates between low rank approximation and training. TRP maintains the capacity of the original network while imposing low-rank constraints during training. A nuclear regularization optimized by stochastic sub-gradient descent is utilized to further promote low rank in TRP. Networks trained with TRP has a low-rank structure in nature, and is approximated with negligible performance loss, thus eliminating fine-tuning after low rank approximation. The proposed method is comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression counterparts using low rank approximation. Our code is available at: https://github.com/yuhuixu1993/Trained-Rank-Pruning.
In this paper, we propose an adaptive pruning method. This method can cut off the channel and layer adaptively. The proportion of the layer and the channel to be cut is learned adaptively. The pruning method proposed in this paper can reduce half of the parameters, and the accuracy will not decrease or even be higher than baseline.
Deep Neural Network (DNN) is powerful but computationally expensive and memory intensive, thus impeding its practical usage on resource-constrained front-end devices. DNN pruning is an approach for deep model compression, which aims at eliminating so me parameters with tolerable performance degradation. In this paper, we propose a novel momentum-SGD-based optimization method to reduce the network complexity by on-the-fly pruning. Concretely, given a global compression ratio, we categorize all the parameters into two parts at each training iteration which are updated using different rules. In this way, we gradually zero out the redundant parameters, as we update them using only the ordinary weight decay but no gradients derived from the objective function. As a departure from prior methods that require heavy human works to tune the layer-wise sparsity ratios, prune by solving complicated non-differentiable problems or finetune the model after pruning, our method is characterized by 1) global compression that automatically finds the appropriate per-layer sparsity ratios; 2) end-to-end training; 3) no need for a time-consuming re-training process after pruning; and 4) superior capability to find better winning tickets which have won the initialization lottery.
Deep neural networks (DNNs) although achieving human-level performance in many domains, have very large model size that hinders their broader applications on edge computing devices. Extensive research work have been conducted on DNN model compression or pruning. However, most of the previous work took heuristic approaches. This work proposes a progressive weight pruning approach based on ADMM (Alternating Direction Method of Multipliers), a powerful technique to deal with non-convex optimization problems with potentially combinatorial constraints. Motivated by dynamic programming, the proposed method reaches extremely high pruning rate by using partial prunings with moderate pruning rates. Therefore, it resolves the accuracy degradation and long convergence time problems when pursuing extremely high pruning ratios. It achieves up to 34 times pruning rate for ImageNet dataset and 167 times pruning rate for MNIST dataset, significantly higher than those reached by the literature work. Under the same number of epochs, the proposed method also achieves faster convergence and higher compression rates. The codes and pruned DNN models are released in the link bit.ly/2zxdlss

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا