ﻻ يوجد ملخص باللغة العربية
We introduce a tropical version of the Fukaya algebra of a Lagrangian submanifold and use it to show that tropical Lagrangian tori are weakly unobstructed. Tropical graphs arise as large-scale behavior of pseudoholomorphic disks under a multiple cut operation on a symplectic manifold that produces a collection of cut spaces each containing relative normal crossing divisors, following works of Ionel and Brett Parker. Given a Lagrangian submanifold in the complement of the relative divisors in one of the cut spaces, the structure maps of the broken Fukaya algebra count broken disks associated to rigid tropical graphs. We introduce a further degeneration of the matching conditions (similar in spirit to Bourgeois version of symplectic field theory) which results in a tropical Fukaya algebra whose structure maps are, in good cases, sums of products over vertices of tropical graphs. We show the tropical Fukaya algebra is homotopy equivalent to the original Fukaya algebra. In the case of toric Lagrangians contained in a toric component of the degeneration, an invariance argument implies the existence of projective Maurer-Cartan solutions.
We use the technique of stabilizing divisors introduced by Cieliebak-Mohnke to construct finite dimensional, strictly unital Fukaya algebras of compact, oriented, relatively spin Lagrangians in compact symplectic manifolds with rational symplectic cl
We compute the Fukaya category of the symplectic blowup of a compact rational symplectic manifold at a point in the following sense: Suppose a collection of Lagrangian branes satisfy Abouzaids criterion for split-generation of a bulk-deformed Fukaya
We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2)
The Nadler-Zaslow correspondence famously identifies the finite-dimensional Floer homology groups between Lagrangians in cotangent bundles with the finite-dimensional Hom spaces between corresponding constructible sheaves. We generalize this correspo
Let $M$ be an exact symplectic manifold with $c_1(M)=0$. Denote by $mathrm{Fuk}(M)$ the Fukaya category of $M$. We show that the dual space of the bar construction of $mathrm{Fuk}(M)$ has a differential graded noncommutative Poisson structure. As a c