ﻻ يوجد ملخص باللغة العربية
Monte Carlo simulation of gauge theories with a $theta$ term is known to be extremely difficult due to the sign problem. Recently there has been major progress in solving this problem based on the idea of complexifying dynamical variables. Here we consider the complex Langevin method (CLM), which is a promising approach for its low computational cost. The drawback of this method, however, is the existence of a condition that has to be met in order for the results to be correct. As a first step, we apply the method to 2D U(1) gauge theory on a torus with a $theta$ term, which can be solved analytically. We find that a naive implementation of the method fails because of the topological nature of the $theta$ term. In order to circumvent this problem, we simulate the same theory on a punctured torus, which is equivalent to the original model in the infinite volume limit for $ |theta| < pi$. Rather surprisingly, we find that the CLM works and reproduces the exact results for a punctured torus even at large $theta$, where the link variables near the puncture become very far from being unitary.
Character expansion developed in real space renormalization group (RSRG) approach is applied to U(1) lattice gauge theory with $th$-term in 2 dimensions. Topological charge distribution $P(Q)$ is shown to be of Gaussian form at any $b$(inverse coupli
We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been
In 4D compact U(1) lattice gauge theory with a monopole term added to the Wilson action we first reveal some properties of a third phase region at negative $beta$. Then at some larger values of the monopole coupling $lambda$ by a finite-size analysis
We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for all
We discuss a new strategy for treating the complex action problem of lattice field theories with a $theta$-term based on density of states (DoS) methods. The key ingredient is to use open boundary conditions where the topological charge is not quanti