ﻻ يوجد ملخص باللغة العربية
The objective of this work is to determine what fraction of red-giant (RG) stars shows photometric rotational modulation, and understand its origin. One of the underlying questions is the role of close binarity in this population, standing upon the fact that RGs in short-period binary systems (<150 days or so) have been observed to display strong rotational modulation. We select a sample of about 4500 relatively bright RGs observed by Kepler, and show that 370 of them (8%) display rotational modulation. Almost all have oscillation amplitudes below the median of the sample, while 30 of them are not oscillating at all. Of the 85 of these RGs with rotational modulation chosen for follow-up radial-velocity observation and analysis, 34 show clear evidence of spectroscopic binarity. Surprisingly, 26 of the 30 non-oscillators are in this group of binaries. To the contrary, about 85% of the active RGs with detectable oscillations are not part of close binaries. With the help of stellar masses and evolutionary states computed from the oscillation properties, it appears that low-mass red-giant branch stars tend to be magnetically inactive, while intermediate-mass ones tend to be highly active. The opposite trends are true for helium-core burning (red clump) stars, whereby the lower-mass clump stars are comparatively more active and the higher-mass ones less so. In other words, we find that low-mass red-giant branch stars gain angular momentum as they evolve to clump stars, while higher-mass ones lose angular momentum. The trend observed with low-mass stars leads to possible scenarios of planet engulfment or other merging events during the shell-burning phase. Regarding intermediate-mass stars, the rotation periods are long with respect to theoretical expectations reported in the literature, which reinforces the existence of an unidentified sink of angular momentum after the main sequence.
[Abridged] We test the evolutionary model of cool close binaries on the observed properties of near contact binaries (NCBs). Those with a more massive component filling the Roche lobe are SD1 binaries whereas in SD2 binaries the Roche lobe filling co
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secret
Carbon-deficient red giants (CDRGs) are a rare class of peculiar red giants, also called weak G-band or weak-CH stars. Their atmospheric compositions show depleted carbon, a low 12C/13C isotopic ratio, and an overabundance of nitrogen, indicating tha
Eclipsing binaries (EBs) are unique benchmarks for stellar evolution. On the one hand, detached EBs hosting at least one star with detectable solar-like oscillations constitute ideal test objects to calibrate asteroseismic measurements. On the other
The detection of mixed modes in red giants with space missions CoRoT and Kepler has revealed their deep internal structure. These modes allow us to characterize the pattern of pressure modes (through the measurement of their asymptotic frequency sepa