ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalar dark matter and leptogenesis in the minimal scotogenic model

118   0   0.0 ( 0 )
 نشر من قبل Pritam Das
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the minimal scotogenic model constituting an additional inert Higgs doublet and three sets of right-handed neutrinos. The scotogenic model connects dark matter, baryon asymmetry of the Universe and neutrino oscillation data. In our work, we obtain baryogenesis by the decay of TeV scale heavy neutral singlet fermion ($N_{2}$). We primarily focus on the intermediate-mass region of dark matter within $M_W<M_{DM}le550$ GeV, where observed relic density is suppressed due to co-annihilation processes. We consider thermal as well as the non-thermal approach of dark matter production and explore the possibility of the lightest stable candidate being a dark matter candidate. Within the inert Higgs doublet (IHD) desert, we explore a new allowed region of dark matter masses for the non-thermal generation of dark matter with a mass splitting of 10 GeV among the inert scalars. We also see the variation of relic abundance for unequal mass splitting among the scalars. The KamLand-Zen bound on the effective mass of the active neutrinos is also verified in this study.



قيم البحث

اقرأ أيضاً

We study a simplest viable dark matter model with a real singlet scalar, vector-like singlet and a doublet lepton. We find a considerable enhancement in the allowed region of the scalar dark matter parameter spaces under the influence of the new Yuka wa coupling. The Yukawa coupling associate with the fermion sector heavily dominant the dark matter parameter spaces satisfying the current relic density of the Universe. Dilepton$+slashed{E}_T$ signature arising from the new fermionic sector can observe at Large Hadron Collider (LHC). We perform such analysis in the context of 14 TeV LHC experiments with a future integrated luminosity of 3000 ${rm fb^{-1}}$. We found that a large region of the parameter spaces can be probed by the LHC experiments. The projected exclusion/discovery reach of direct heavy charged fermion searches in this channels is analyzed by performing a detailed cut based collider analysis. The projected exclusion contour reaches up to $1050-1380~{rm GeV}$ for 3000 ${rm fb^{-1}}$ for a light dark matter $mathcal{O}(10)$ GeV from searches in the $ pp rightarrow E_1^pm E_1^mp, E_1^pmrightarrow l^pm S rightarrow ll + slashed{E}_T$ channel.
We explore the phenomenology of the Georgi-Machacek model extended with two Higgs doublets and vector fermion doublets invariant under $SU(2)_L times U(1)_Ytimes mathcal {Z}_4 times mathcal {Z}_2$. The $mathcal {Z}_4$ symmetry is broken spontaneously while the imposed $mathcal {Z}_2$ symmetry forbids triplet fields to generate any vacuum expectation value and leading to an inert dark sector providing a viable candidate for dark matter and generate neutrino mass radiatively. Another interesting feature of the model is leptogenesis arising from decay of vector-like fermions. A detailed study of the model is pursued in search for available parameter space consistent with the theoretical and experimental observations for dark matter, neutrino physics, flavor physics, matter-antimatter asymmetry in the Universe.
296 - T. de Boer , R. Busse , A. Kappes 2021
Radiative seesaw models have the attractive property of providing dark matter candidates in addition to the generation of neutrino masses. Here we present a study of neutrino signals from the annihilation of dark matter particles that have been gravi tationally captured in the Sun in the framework of the scotogenic model. We compute expected event rates in the IceCube detector in its 86-string configuration. As fermionic dark matter does not scatter off nucleons due to its singlet nature and therefore does not accumulate in the Sun, we study the case of scalar dark matter with a scan over the parameter space. Due to a naturally small mass splitting between the two neutral scalar components, inelastic scattering processes with nucleons can occur. We find that for most of the parameter space, i.e. for mass splittings below 500 keV, inelastic scattering in the Sun yields IceCube event rates above 10 events per year, whereas direct detection on Earth is sensitive only to 250 keV. Consequently, a detailed analysis with IceCube could lead to a lower limit on the scalar coupling $lambda_5gtrsim1.6cdot10^{-5}cdot m_{DM}$/TeV. For larger mass splittings, only elastic scattering occurs in the Sun. In this case, XENON1T limits only allow for models with expected event rates of up to O(0.1) per year. Some of these models, in particular those with large DM mass and fermion coannihilation, could also be tested with a dedicated IceCube analysis of DM annihilation in the Galactic Center.
We have studied the scotogenic model proposed by Ernest Ma, which is an extension of the Standard Model by three singlet right-handed neutrinos and a scalar doublet. This model proposes that the light neutrinos acquire a non-zero mass at 1-loop level . In this work, the realisation of the scotogenic model is done by using discrete symmetries $A_{4}times Z_{4}$ in which the non-zero $theta_{13}$ is produced by assuming a non-degeneracy in the loop factor. Considering different lepton flavor violating(LFV) processes such as $l_{alpha}longrightarrow l_{beta}gamma$ and $l_{alpha}longrightarrow 3l_{beta}$, their impact on neutrino phenomenology is studied. We have also analysed $0 ubetabeta$ and baryon asymmetry of the Universe (BAU) in this work.
In this letter, we propose an extension of the scotogenic model where singlet Majorana particle can be dark matter (DM) without the need of a highly suppressed scalar coupling of the order $O(10^{-10})$. For that, the SM is extended with three single t Majorana fermions, an inert scalar doublet, and two (a complex and a real) singlet scalars, with a global $Z_{4}$ symmetry that is spontaneously broken into $Z_{2}$ at a scale higher than the electroweak one by the vev of the complex singlet scalar. In this setup, the smallness of neutrino mass is achieved via the cancellation between three diagrams a la scotogenic, a DM candidate that is viable for a large mass range; and the phenomenology is richer than the minimal scotogenic model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا