ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle acceleration in low-power hotspots: modelling the broad-band spectral energy distribution

144   0   0.0 ( 0 )
 نشر من قبل Giulia Migliori Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Migliori




اسأل ChatGPT حول البحث

The acceleration and radiative processes active in low-power radio hotspots are investigated by means of new deep near-infrared (NIR) and optical VLT observations, complemented with archival, high-sensitivity VLT, radio VLA and X-ray Chandra data. For the three studied radio galaxies (3C 105, 3C 195 and 3C 227), we confirm the detection of NIR/optical counterparts of the observed radio hotspots. We resolve multiple components in 3C 227 West and in 3C 105 South and characterize the diffuse NIR/optical emission of the latter. We show that the linear size of this component ($gtrsim$4 kpc) makes 3C 105 South a compelling case for particles re-acceleration in the post-shock region. Modeling of the radio-to-X-ray spectral energy distribution (SED) of 3C 195 South and 3C 227 W1 gives clues on the origin of the detected X-ray emission. In the context of inverse Compton models, the peculiarly steep synchrotron curve of 3C 195 South sets constraints on the shape of the radiating particles spectrum that are testable with better knowledge of the SED shape at low ($lesssim$GHz) radio frequencies and in X-rays. The X-ray emission of 3C 227 W1 can be explained with an additional synchrotron component originating in compact ($<$100 pc) regions, such those revealed by radio observations at 22 GHz, provided that efficient particle acceleration ($gammagtrsim$10$^7$) is ongoing. The emerging picture is that of systems in which different acceleration and radiative processes coexist.



قيم البحث

اقرأ أيضاً

Context. NRAO 150 is one of the brightest radio and mm AGN sources on the northern sky. It has been revealed as an interesting source where to study extreme relativistic jet phenomena. However, its cosmological distance has not been reported so far, because of its optical faintness produced by strong Galactic extinction. Aims. Aiming at measuring the redshift of NRAO 150, and hence to start making possible quantitative studies from the source. Methods. We have conducted spectroscopic and photometric observations of the source in the near-IR, as well as in the optical. Results. All such observations have been successful in detecting the source. The near-IR spectroscopic observations reveal strong H$alpha$ and H$beta$ emission lines from which the cosmological redshift of NRAO 150 ($z=1.517pm0.002$) has been determined for the first time. We classify the source as a flat-spectrum radio-loud quasar, for which we estimate a large super-massive black-hole mass $sim5times 10^{9} mathrm{M_odot}$. After extinction correction, the new near-IR and optical data have revealed a high-luminosity continuum-emission excess in the optical (peaking at $sim2000$,AA, rest frame) that we attribute to thermal emission from the accretion disk for which we estimate a high accretion rate, $sim30$,% of the Eddington limit. Conclusions. Comparison of these source properties, and its broad-band spectral-energy distribution, with those of Fermi blazars allow us to predict that NRAO 150 is among the most powerful blazars, and hence a high luminosity -although not detected yet- $gamma$-ray emitter.
We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-ar csecond, or, at the distance to M94, <23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ~1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.
We study the X-ray transient Swift J1745-26, using observations obtained from its outburst in September 2012, up to its decay towards quiescence in March 2013. We obtained optical and infrared observations, through override programme at ESO/VLT with FORS2 and ISAAC instruments, and archival optical (VLT/VIRCAM), radio and X-ray (Swift) observations, to build the lightcurve and the broad-band Spectral Energy Distribution (SED) of Swift J1745-26. We show that, during its outburst and also during its decay towards quiescence, Swift J1745-26 SED can be adjusted, from infrared up to X-rays, by the sum of both a viscous irradiated multi-colour blackbody emitted by an accretion disk, and a synchrotron powerlaw at high energy. In the radio domain, the SED arises from synchrotron emission from the jet. While our SED fitting confirms that the source remained in the low/hard state during its outburst, we determine an X-ray spectral break at frequency 3.1 < nu_break < 3.4 x 10^14 Hz, and a radio spectral break at 10^12 Hz < nu_break < 10^13 Hz. We also show that the system is compatible with an absorption Av of ~7.69 magnitudes, lies within a distance interval of D~[2.6-4.8] kpc, with an upper limit of orbital period P_orb = 11.3 hours, and that the companion star is a late-type star of spectral type in the range K0 - M0 V, confirming that the system is a low-mass X-ray binary. We finally plot the position of Swift J1745-26 on an optical-infrared - X-ray luminosity diagram: its localization on this diagram is consistent with the source staying in the low-hard state during outburst and decay phases.
84 - Lorenzo Sironi 2017
We discuss the role of particle-in-cell (PIC) simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Cra b Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.
Supernova remnants are believed to be the major contributors to Galactic cosmic rays. In this paper, we explore how the non-thermal emission from young remnants can be used to probe the production of energetic particles at the shock (both protons and electrons). Our model couples hydrodynamic simulations of a supernova remnant with a kinetic treatment of particle acceleration. We include two important back-reaction loops upstream of the shock: energetic particles can (i) modify the flow structure and (ii) amplify the magnetic field. As the latter process is not fully understood, we use different limit cases that encompass a wide range of possibilities. We follow the history of the shock dynamics and of the particle transport downstream of the shock, which allows us to compute the non-thermal emission from the remnant at any given age. We do this in 3D, in order to generate projected maps that can be compared with observations. We observe that completely different recipes for the magnetic field can lead to similar modifications of the shock structure, although to very different configurations of the field and particles. We show how this affects the emission patterns in different energy bands, from radio to X-rays and $gamma$-rays. High magnetic fields ($>100 mu$G) directly impact the synchrotron emission from electrons, by restricting their emission to thin rims, and indirectly impact the inverse Compton emission from electrons and also the pion decay emission from protons, mostly by shifting their cut-off energies to respectively lower and higher energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا