ﻻ يوجد ملخص باللغة العربية
Light-matter interactions can occur when an ensemble of molecular resonators is placed in a confined electromagnetic field. In the strong coupling regime the rapid exchange of energy between the molecules and the electromagnetic field results in the emergence of hybrid light-matter states called polaritons. Multiple criteria exist to define the strong coupling regime, usually by comparing the splitting of the polariton bands with the linewidths of the uncoupled modes. Here we highlight the limitations of these criteria and study strong coupling using spectroscopic ellipsometry, a commonly used optical characterisation technique. We identify a new signature of strong coupling in ellipsometric phase spectra. Combining ellipsometric amplitude and phase spectra yields a distinct topological feature that we suggest could serve as a new criterion for strong coupling. Our results introduce the idea of ellipsometric topology and could provide further insight into the transition from the weak to strong coupling regime.
It is well known that optical absorption saturation of intersubband transitions in doped semiconductor quantum wells is independent of the introduced doping in the absence of a cavity. When inserting the system in a resonator, we show that this remai
Non-reciprocity of signal transmission enhances capacity of communication channels and protects transmission quality against possible signal instabilities, thus becoming an important component ensuring coherent information processing. However, non-re
The ultra-strong light-matter coupling regime has been demonstrated in a novel three-dimensional inductor-capacitor (LC) circuit resonator, embedding a semiconductor two-dimensional electron gas in the capacitive part. The fundamental resonance of th
The optical properties of transition metal dichalcogenide monolayers are widely dominated by excitons, Coulomb-bound electron-hole pairs. These quasi-particles exhibit giant oscillator strength and give rise to narrow-band, well-pronounced optical tr
Strong coupling between light and the fundamental excitations of a two-dimensional electron gas (2DEG) are of foundational importance both to pure physics and to the understanding and development of future photonic nanotechnologies. Here we study the