ﻻ يوجد ملخص باللغة العربية
The fundamentals and higher vibrationally excited states for the N$_3^+$ ion in its electronic ground state have been determined from quantum bound state calculations on 3-dimensional potential energy surfaces (PESs) at the CCSD(T)-F12 and MRCI+Q levels of theory. The vibrational fundamentals are at 1130 cm$^{-1}$ ($ u_1$, symmetric stretch), 807 cm$^{-1}$ ($ u_3$, asymmetric stretch), and 406 cm$^{-1}$ ($ u_2$, bend) on the higher-quality CCSD(T)-F12 surface. For $ u_1$, the calculations are close to the estimated frequency from experiment (1170 cm$^{-1}$) and previous calculationscite{rosmus.n3:1994} which find it at 1190 cm$^{-1}$. Calculations of the vibrational states on the MRCI+Q PES are in qualitative agreement with those using the CCSD(T)-F12 PES. Analysis of the reference CASSCF wave function for the MRCI+Q calculations provides further insight into the shape of the PES and lends support for the reliability of Hartree-Fock as the reference wave function for the coupled cluster calculations. According to this, N$_3^+$ has mainly single reference character in all low-energy regions of its electronic ground state ($^3$A$$) 3d PES.
The lowest doublet electronic state for the lithium trimer (2A) is calculated for use in three-body scattering calculations using the valence electron FCI method with atomic cores represented using an effective core potential. It is shown that an acc
A globally correct potential energy surface (PES) for the hp molecular ion is presented. The Born-Oppenheimer (BO) ai grid points of Pavanello et. al. [textit{J. Chem. Phys.} {bf 136}, 184303 (2012)] are refitted as BOPES75K, which reproduces the ene
We introduce a heterodimer model in which multiple mechanisms of vibronic coupling and their impact on energy transfer can be explicitly studied. We consider vibronic coupling that arises through either Franck-Condon activity in which each site in th
We report on the findings of a blind challenge devoted to determining the frozen-core, full configuration interaction (FCI) ground state energy of the benzene molecule in a standard correlation-consistent basis set of double-$zeta$ quality. As a broa
In this study, we analyze how changes in the geometry of a potential energy surface in terms of depth and flatness can affect the reaction dynamics. We formulate depth and flatness in the context of one and two degree-of-freedom (DOF) Hamiltonian nor