ترغب بنشر مسار تعليمي؟ اضغط هنا

CFR-RL: Traffic Engineering with Reinforcement Learning in SDN

81   0   0.0 ( 0 )
 نشر من قبل Minghao Ye
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional Traffic Engineering (TE) solutions can achieve the optimal or near-optimal performance by rerouting as many flows as possible. However, they do not usually consider the negative impact, such as packet out of order, when frequently rerouting flows in the network. To mitigate the impact of network disturbance, one promising TE solution is forwarding the majority of traffic flows using Equal-Cost Multi-Path (ECMP) and selectively rerouting a few critical flows using Software-Defined Networking (SDN) to balance link utilization of the network. However, critical flow rerouting is not trivial because the solution space for critical flow selection is enormous. Moreover, it is impossible to design a heuristic algorithm for this problem based on fixed and simple rules, since rule-based heuristics are unable to adapt to the changes of the traffic matrix and network dynamics. In this paper, we propose CFR-RL (Critical Flow Rerouting-Reinforcement Learning), a Reinforcement Learning-based scheme that learns a policy to select critical flows for each given traffic matrix automatically. CFR-RL then reroutes these selected critical flows to balance link utilization of the network by formulating and solving a simple Linear Programming (LP) problem. Extensive evaluations show that CFR-RL achieves near-optimal performance by rerouting only 10%-21.3% of total traffic.



قيم البحث

اقرأ أيضاً

87 - Zhuo Li , Xu Zhou , Junruo Gao 2021
Aiming at the local overload of multi-controller deployment in software-defined networks, a load balancing mechanism of SDN controller based on reinforcement learning is designed. The initial paired migrate-out domain and migrate-in domain are obtain ed by calculating the load ratio deviation between the controllers, a preliminary migration triplet, contains migration domain mentioned above and a group of switches which are subordinated to the migrate-out domain, makes the migration efficiency reach the local optimum. Under the constraint of the best efficiency of migration in the whole and without migration conflict, selecting multiple sets of triples based on reinforcement learning, as the final migration of this round to attain the global optimal controller load balancing with minimum cost. The experimental results illustrate that the mechanism can make full use of the controllers resources, quickly balance the load between controllers, reduce unnecessary migration overhead and get a faster response rate of the packet-in request.
Traffic Engineering (TE) is a basic building block of the Internet. In this paper, we analyze whether modern Machine Learning (ML) methods are ready to be used for TE optimization. We address this open question through a comparative analysis between the state of the art in ML and the state of the art in TE. To this end, we first present a novel distributed system for TE that leverages the latest advancements in ML. Our system implements a novel architecture that combines Multi-Agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN) to minimize network congestion. In our evaluation, we compare our MARL+GNN system with DEFO, a network optimizer based on Constraint Programming that represents the state of the art in TE. Our experimental results show that the proposed MARL+GNN solution achieves equivalent performance to DEFO in a wide variety of network scenarios including three real-world network topologies. At the same time, we show that MARL+GNN can achieve significant reductions in execution time (from the scale of minutes with DEFO to a few seconds with our solution).
LoRa wireless networks are considered as a key enabling technology for next generation internet of things (IoT) systems. New IoT deployments (e.g., smart city scenarios) can have thousands of devices per square kilometer leading to huge amount of pow er consumption to provide connectivity. In this paper, we investigate green LoRa wireless networks powered by a hybrid of the grid and renewable energy sources, which can benefit from harvested energy while dealing with the intermittent supply. This paper proposes resource management schemes of the limited number of channels and spreading factors (SFs) with the objective of improving the LoRa gateway energy efficiency. First, the problem of grid power consumption minimization while satisfying the systems quality of service demands is formulated. Specifically, both scenarios the uncorrelated and time-correlated channels are investigated. The optimal resource management problem is solved by decoupling the formulated problem into two sub-problems: channel and SF assignment problem and energy management problem. Since the optimal solution is obtained with high complexity, online resource management heuristic algorithms that minimize the grid energy consumption are proposed. Finally, taking into account the channel and energy correlation, adaptable resource management schemes based on Reinforcement Learning (RL), are developed. Simulations results show that the proposed resource management schemes offer efficient use of renewable energy in LoRa wireless networks.
Network management often relies on machine learning to make predictions about performance and security from network traffic. Often, the representation of the traffic is as important as the choice of the model. The features that the model relies on, a nd the representation of those features, ultimately determine model accuracy, as well as where and whether the model can be deployed in practice. Thus, the design and evaluation of these models ultimately requires understanding not only model accuracy but also the systems costs associated with deploying the model in an operational network. Towards this goal, this paper develops a new framework and system that enables a joint evaluation of both the conventional notions of machine learning performance (e.g., model accuracy) and the systems-level costs of different representations of network traffic. We highlight these two dimensions for two practical network management tasks, video streaming quality inference and malware detection, to demonstrate the importance of exploring different representations to find the appropriate operating point. We demonstrate the benefit of exploring a range of representations of network traffic and present Traffic Refinery, a proof-of-concept implementation that both monitors network traffic at 10 Gbps and transforms traffic in real time to produce a variety of feature representations for machine learning. Traffic Refinery both highlights this design space and makes it possible to explore different representations for learning, balancing systems costs related to feature extraction and model training against model accuracy.
141 - Yong Zeng , Xiaoli Xu 2019
This paper studies the path design problem for cellular-connected unmanned aerial vehicle (UAV), which aims to minimize its mission completion time while maintaining good connectivity with the cellular network. We first argue that the conventional pa th design approach via formulating and solving optimization problems faces several practical challenges, and then propose a new reinforcement learning-based UAV path design algorithm by applying emph{temporal-difference} method to directly learn the emph{state-value function} of the corresponding Markov Decision Process. The proposed algorithm is further extended by using linear function approximation with tile coding to deal with large state space. The proposed algorithms only require the raw measured or simulation-generated signal strength as the input and are suitable for both online and offline implementations. Numerical results show that the proposed path designs can successfully avoid the coverage holes of cellular networks even in the complex urban environment.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا