ﻻ يوجد ملخص باللغة العربية
Traditional Traffic Engineering (TE) solutions can achieve the optimal or near-optimal performance by rerouting as many flows as possible. However, they do not usually consider the negative impact, such as packet out of order, when frequently rerouting flows in the network. To mitigate the impact of network disturbance, one promising TE solution is forwarding the majority of traffic flows using Equal-Cost Multi-Path (ECMP) and selectively rerouting a few critical flows using Software-Defined Networking (SDN) to balance link utilization of the network. However, critical flow rerouting is not trivial because the solution space for critical flow selection is enormous. Moreover, it is impossible to design a heuristic algorithm for this problem based on fixed and simple rules, since rule-based heuristics are unable to adapt to the changes of the traffic matrix and network dynamics. In this paper, we propose CFR-RL (Critical Flow Rerouting-Reinforcement Learning), a Reinforcement Learning-based scheme that learns a policy to select critical flows for each given traffic matrix automatically. CFR-RL then reroutes these selected critical flows to balance link utilization of the network by formulating and solving a simple Linear Programming (LP) problem. Extensive evaluations show that CFR-RL achieves near-optimal performance by rerouting only 10%-21.3% of total traffic.
Aiming at the local overload of multi-controller deployment in software-defined networks, a load balancing mechanism of SDN controller based on reinforcement learning is designed. The initial paired migrate-out domain and migrate-in domain are obtain
Traffic Engineering (TE) is a basic building block of the Internet. In this paper, we analyze whether modern Machine Learning (ML) methods are ready to be used for TE optimization. We address this open question through a comparative analysis between
LoRa wireless networks are considered as a key enabling technology for next generation internet of things (IoT) systems. New IoT deployments (e.g., smart city scenarios) can have thousands of devices per square kilometer leading to huge amount of pow
Network management often relies on machine learning to make predictions about performance and security from network traffic. Often, the representation of the traffic is as important as the choice of the model. The features that the model relies on, a
This paper studies the path design problem for cellular-connected unmanned aerial vehicle (UAV), which aims to minimize its mission completion time while maintaining good connectivity with the cellular network. We first argue that the conventional pa