ﻻ يوجد ملخص باللغة العربية
We recently introduced a new family of processes which describe particles which only can move at the speed of light c in the ordinary 3D physical space. The velocity, which randomly changes direction, can be represented as a point on the surface of a sphere of radius c and its trajectories only may connect the points of this variety. A process can be constructed both by considering jumps from one point to another (velocity changes discontinuously) and by continuous velocity trajectories on the surface. We followed this second new strategy assuming that the velocity is described by a Wiener process (which is isotropic only in the rest frame) on the surface of the sphere. Using both Ito calculus and Lorentz boost rules, we succeed here in characterizing the entire Lorentz-invariant family of processes. Moreover, we highlight and describe the short-term ballistic behavior versus the long-term diffusive behavior of the particles in the 3D physical space.
We expand the IST transformation to three-dimensional Euclidean space and derive the speed of light under the IST transformation. The switch from the direction cosines observed in K to those observed in K-prime is surprisingly smooth. The formulation
We report on a test of Lorentz invariance performed by comparing the resonance frequencies of one stationary optical resonator and one continuously rotating on a precision air bearing turntable. Special attention is paid to the control of rotation in
This work presents an experimental test of Lorentz invariance violation in the infrared (IR) regime by means of an invariant minimum speed in the spacetime and its effects on the time when an atomic clock given by a certain radioactive single-atom (e
The structure of the Lorentz transformations follows purely from the absence of privileged inertial reference frames and the group structure (closure under composition) of the transformations---two assumptions that are simple and physically necessary
We considered the generalization of Einsteins model of Brownian motion when the key parameter of the time interval of free jumps degenerates. This phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dens