ﻻ يوجد ملخص باللغة العربية
Lidar based 3D object detection and classification tasks are essential for automated driving(AD). A Lidar sensor can provide the 3D point coud data reconstruction of the surrounding environment. But the detection in 3D point cloud still needs a strong algorithmic challenge. This paper consists of three parts.(1)Lidar-camera calib. (2)YOLO, based detection and PointCloud extraction, (3) k-means based point cloud segmentation. In our research, Camera can capture the image to make the Real-time 2D Object Detection by using YOLO, I transfer the bounding box to node whose function is making 3d object detection on point cloud data from Lidar. By comparing whether 2D coordinate transferred from the 3D point is in the object bounding box or not, and doing a k-means clustering can achieve High-speed 3D object recognition function in GPU.
Lidar based 3D object detection and classification tasks are essential for autonomous driving(AD). A lidar sensor can provide the 3D point cloud data reconstruction of the surrounding environment. However, real time detection in 3D point clouds still
Monocular 3D detection currently struggles with extremely lower detection rates compared to LiDAR-based methods. The poor accuracy is mainly caused by the absence of accurate location cues due to the ill-posed nature of monocular imagery. LiDAR point
While current 3D object recognition research mostly focuses on the real-time, onboard scenario, there are many offboard use cases of perception that are largely under-explored, such as using machines to automatically generate high-quality 3D labels.
This report presents our method which wins the nuScenes3D Detection Challenge [17] held in Workshop on Autonomous Driving(WAD, CVPR 2019). Generally, we utilize sparse 3D convolution to extract rich semantic features, which are then fed into a class-
Object detection in three-dimensional (3D) space attracts much interest from academia and industry since it is an essential task in AI-driven applications such as robotics, autonomous driving, and augmented reality. As the basic format of 3D data, th